Filtros : "Espanha" "Indexado no MathSciNet" Removido: " IFSC007" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, v. 416, n. Ja 2025, p. 1462-1495, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2024.10.029. Acesso em: 11 nov. 2024.
    • APA

      Carvalho, A. N. de, Lappicy, P., Moreira, E. M., & Oliveira-Sousa, A. do N. (2025). A unified theory for inertial manifolds, saddle point property and exponential dichotomy. Journal of Differential Equations, 416( Ja 2025), 1462-1495. doi:10.1016/j.jde.2024.10.029
    • NLM

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
    • Vancouver

      Carvalho AN de, Lappicy P, Moreira EM, Oliveira-Sousa A do N. A unified theory for inertial manifolds, saddle point property and exponential dichotomy [Internet]. Journal of Differential Equations. 2025 ; 416( Ja 2025): 1462-1495.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.jde.2024.10.029
  • Source: Journal of Computational Dynamics. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. What is the Magnus expansion?. Journal of Computational Dynamics, v. 12, n. Ja 2025, p. 115-159, 2025Tradução . . Disponível em: https://doi.org/10.3934/jcd.2024028. Acesso em: 11 nov. 2024.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Quesney, A. T. G. (2025). What is the Magnus expansion? Journal of Computational Dynamics, 12( Ja 2025), 115-159. doi:10.3934/jcd.2024028
    • NLM

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/jcd.2024028
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/jcd.2024028
  • Source: Studies in Applied Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCÍA, Isaac A e GINÉ, Jaume e RODERO, Ana Livia. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, v. 153, n. 2, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.1111/sapm.12724. Acesso em: 11 nov. 2024.
    • APA

      García, I. A., Giné, J., & Rodero, A. L. (2024). Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities. Studies in Applied Mathematics, 153( 2), 1-27. doi:10.1111/sapm.12724
    • NLM

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1111/sapm.12724
    • Vancouver

      García IA, Giné J, Rodero AL. Existence and nonexistence of Puiseux inverse integrating factors in analytic monodromic singularities [Internet]. Studies in Applied Mathematics. 2024 ; 153( 2): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1111/sapm.12724
  • Source: International Journal of Bifurcation and Chaos. Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan Carles e MOTA, Marcos Coutinho e REZENDE, Alex Carlucci. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, v. 34, n. 11, p. 2430023-1-2430023-43, 2024Tradução . . Disponível em: https://doi.org/10.1142/S0218127424300234. Acesso em: 11 nov. 2024.
    • APA

      Artés, J. C., Mota, M. C., & Rezende, A. C. (2024). Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle. International Journal of Bifurcation and Chaos, 34( 11), 2430023-1-2430023-43. doi:10.1142/S0218127424300234
    • NLM

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218127424300234
    • Vancouver

      Artés JC, Mota MC, Rezende AC. Quadratic systems possessing an infinite elliptic-saddle or an infinite nilpotent saddle [Internet]. International Journal of Bifurcation and Chaos. 2024 ; 34( 11): 2430023-1-2430023-43.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1142/S0218127424300234
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Disponível em 2025-08-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 11 nov. 2024.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2024). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2024 ;[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 11 nov. 2024.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Advances in Differential Equations. Unidades: ICMC, IME

    Subjects: TEORIA DA BIFURCAÇÃO, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, TEORIA DO ÍNDICE, TOPOLOGIA DINÂMICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José María et al. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. Advances in Differential Equations, v. Jan.-Fe 2024, n. 1-2, p. 1-26, 2024Tradução . . Disponível em: https://doi.org/10.57262/ade029-0102-1. Acesso em: 11 nov. 2024.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Moreira, E. M., & Valero, J. (2024). Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem. Advances in Differential Equations, Jan.-Fe 2024( 1-2), 1-26. doi:10.57262/ade029-0102-1
    • NLM

      Arrieta JM, Carvalho AN de, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem [Internet]. Advances in Differential Equations. 2024 ; Jan.-Fe 2024( 1-2): 1-26.[citado 2024 nov. 11 ] Available from: https://doi.org/10.57262/ade029-0102-1
    • Vancouver

      Arrieta JM, Carvalho AN de, Moreira EM, Valero J. Bifurcation and hyperbolicity for a nonlocal quasilinear parabolic problem [Internet]. Advances in Differential Equations. 2024 ; Jan.-Fe 2024( 1-2): 1-26.[citado 2024 nov. 11 ] Available from: https://doi.org/10.57262/ade029-0102-1
  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, v. 32, n. 3, p. 933-941, 2024Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 11 nov. 2024.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2024). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 32( 3), 933-941. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2024 ; 32( 3): 933-941.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Nonlinear analysis : real world applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, SOLUÇÕES PERIÓDICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAUN, Francisco e CRUZ, Leonardo Pereira Costa da e TORREGROSA, Joan. On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, v. 79, p. 1-15, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2024.104124. Acesso em: 11 nov. 2024.
    • APA

      Braun, F., Cruz, L. P. C. da, & Torregrosa, J. (2024). On the number of limit cycles in piecewise planar quadratic differential systems. Nonlinear analysis : real world applications, 79, 1-15. doi:10.1016/j.nonrwa.2024.104124
    • NLM

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
    • Vancouver

      Braun F, Cruz LPC da, Torregrosa J. On the number of limit cycles in piecewise planar quadratic differential systems [Internet]. Nonlinear analysis : real world applications. 2024 ; 79 1-15.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1016/j.nonrwa.2024.104124
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUZZI, Claudio Aguinaldo e RODERO, Ana Livia e TORREGROSA, Joan. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, v. 2024, n. 43, p. 1-27, 2024Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2024.1.43. Acesso em: 11 nov. 2024.
    • APA

      Buzzi, C. A., Rodero, A. L., & Torregrosa, J. (2024). 3-dimensional piecewise linear and quadratic vector fields with invariant spheres. Electronic Journal of Qualitative Theory of Differential Equations, 2024( 43), 1-27. doi:10.14232/ejqtde.2024.1.43
    • NLM

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
    • Vancouver

      Buzzi CA, Rodero AL, Torregrosa J. 3-dimensional piecewise linear and quadratic vector fields with invariant spheres [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2024 ; 2024( 43): 1-27.[citado 2024 nov. 11 ] Available from: https://doi.org/10.14232/ejqtde.2024.1.43
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DIMENSÃO INFINITA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, v. 36, p. S65-S75, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09962-8. Acesso em: 11 nov. 2024.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2024). A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, 36, S65-S75. doi:10.1007/s10884-021-09962-8
    • NLM

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
    • Vancouver

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2024 ; 36 S65-S75.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, SISTEMAS DINÂMICOS, MÉTODOS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo e BEATRIZ, Ester. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, v. 389, n. 4, p. 4125-4147, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-023-02740-5. Acesso em: 11 nov. 2024.
    • APA

      Lappicy, P., & Beatriz, E. (2024). An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension. Mathematische Annalen, 389( 4), 4125-4147. doi:10.1007/s00208-023-02740-5
    • NLM

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00208-023-02740-5
    • Vancouver

      Lappicy P, Beatriz E. An energy formula for fully nonlinear degenerate parabolic equations in one spatial dimension [Internet]. Mathematische Annalen. 2024 ; 389( 4): 4125-4147.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00208-023-02740-5
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, GEOMETRIA DIFERENCIAL CLÁSSICA, SUPERFÍCIES, INVARIANTES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEÑAFORT SANCHIS, Guilhermo e TARI, Farid. On k-folding map-germs and hidden symmetries of surfaces in the Euclidean 3-space. Proceedings of the Royal Society of Edinburgh, v. 154, n. 1, p. 60-104, 2024Tradução . . Disponível em: https://doi.org/10.1017/prm.2022.90. Acesso em: 11 nov. 2024.
    • APA

      Peñafort Sanchis, G., & Tari, F. (2024). On k-folding map-germs and hidden symmetries of surfaces in the Euclidean 3-space. Proceedings of the Royal Society of Edinburgh, 154( 1), 60-104. doi:10.1017/prm.2022.90
    • NLM

      Peñafort Sanchis G, Tari F. On k-folding map-germs and hidden symmetries of surfaces in the Euclidean 3-space [Internet]. Proceedings of the Royal Society of Edinburgh. 2024 ; 154( 1): 60-104.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1017/prm.2022.90
    • Vancouver

      Peñafort Sanchis G, Tari F. On k-folding map-germs and hidden symmetries of surfaces in the Euclidean 3-space [Internet]. Proceedings of the Royal Society of Edinburgh. 2024 ; 154( 1): 60-104.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1017/prm.2022.90
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DOS NÓS, FIBRAÇÕES, GEOMETRIA ALGÉBRICA REAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAÚJO DOS SANTOS, Raimundo Nonato e BODE, Benjamin e SANCHEZ QUICENO, Eder Leandro. Links of singularities of inner non-degenerate mixed functions. Bulletin of the Brazilian Mathematical Society : New Series, v. 55, n. 3, p. 1-49, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00574-024-00407-6. Acesso em: 11 nov. 2024.
    • APA

      Araújo dos Santos, R. N., Bode, B., & Sanchez Quiceno, E. L. (2024). Links of singularities of inner non-degenerate mixed functions. Bulletin of the Brazilian Mathematical Society : New Series, 55( 3), 1-49. doi:10.1007/s00574-024-00407-6
    • NLM

      Araújo dos Santos RN, Bode B, Sanchez Quiceno EL. Links of singularities of inner non-degenerate mixed functions [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( 3): 1-49.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00574-024-00407-6
    • Vancouver

      Araújo dos Santos RN, Bode B, Sanchez Quiceno EL. Links of singularities of inner non-degenerate mixed functions [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2024 ; 55( 3): 1-49.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s00574-024-00407-6
  • Source: Mathematische Nachrichten. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, TOPOLOGIA DIFERENCIAL, GEOMETRIA DIFERENCIAL CLÁSSICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIUL, Pedro Benedini e SINHA, Raúl Oset e RUAS, Maria Aparecida Soares. Curvature loci of 3-manifolds. Mathematische Nachrichten, v. 296, n. 10, p. 4656-4672, 2023Tradução . . Disponível em: https://doi.org/10.1002/mana.202200170. Acesso em: 11 nov. 2024.
    • APA

      Riul, P. B., Sinha, R. O., & Ruas, M. A. S. (2023). Curvature loci of 3-manifolds. Mathematische Nachrichten, 296( 10), 4656-4672. doi:10.1002/mana.202200170
    • NLM

      Riul PB, Sinha RO, Ruas MAS. Curvature loci of 3-manifolds [Internet]. Mathematische Nachrichten. 2023 ; 296( 10): 4656-4672.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.202200170
    • Vancouver

      Riul PB, Sinha RO, Ruas MAS. Curvature loci of 3-manifolds [Internet]. Mathematische Nachrichten. 2023 ; 296( 10): 4656-4672.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1002/mana.202200170
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SISTEMAS DINÂMICOS, DINÂMICA DOS FLUÍDOS, EQUAÇÕES DE NAVIER-STOKES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e LÓPEZ-LÁZARO, Heraclio. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, v. No 2023, n. 11, p. 112701-1-112701-29, 2023Tradução . . Disponível em: https://doi.org/10.1063/5.0150897. Acesso em: 11 nov. 2024.
    • APA

      Caraballo, T., Carvalho, A. N. de, & López-Lázaro, H. (2023). Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids. Journal of Mathematical Physics, No 2023( 11), 112701-1-112701-29. doi:10.1063/5.0150897
    • NLM

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1063/5.0150897
    • Vancouver

      Caraballo T, Carvalho AN de, López-Lázaro H. Nonlinear dynamical analysis for globally modified incompressible non-Newtonian fluids [Internet]. Journal of Mathematical Physics. 2023 ; No 2023( 11): 112701-1-112701-29.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1063/5.0150897
  • Source: Studia Mathematica. Unidade: ICMC

    Subjects: ESPAÇOS DE INTERPOLAÇÃO, ESPAÇOS DE BANACH, ÁLGEBRAS DE BANACH

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SÁNCHEZ, Félix Cabello e CASTILLO, Jesús M. F e CORRÊA, Willian Hans Goes. Higher order derivatives of analytic families of Banach spaces. Studia Mathematica, v. 272, p. 245-297, 2023Tradução . . Disponível em: https://doi.org/10.4064/sm220919-3-2. Acesso em: 11 nov. 2024.
    • APA

      Sánchez, F. C., Castillo, J. M. F., & Corrêa, W. H. G. (2023). Higher order derivatives of analytic families of Banach spaces. Studia Mathematica, 272, 245-297. doi:10.4064/sm220919-3-2
    • NLM

      Sánchez FC, Castillo JMF, Corrêa WHG. Higher order derivatives of analytic families of Banach spaces [Internet]. Studia Mathematica. 2023 ; 272 245-297.[citado 2024 nov. 11 ] Available from: https://doi.org/10.4064/sm220919-3-2
    • Vancouver

      Sánchez FC, Castillo JMF, Corrêa WHG. Higher order derivatives of analytic families of Banach spaces [Internet]. Studia Mathematica. 2023 ; 272 245-297.[citado 2024 nov. 11 ] Available from: https://doi.org/10.4064/sm220919-3-2
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: ANÁLISE GLOBAL, ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, v. 28, n. Ja 2023, p. 426-448, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2022083. Acesso em: 11 nov. 2024.
    • APA

      Carvalho, A. N. de, Rocha, L. R. N., Langa, J. A., & Obaya, R. (2023). Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, 28( Ja 2023), 426-448. doi:10.3934/dcdsb.2022083
    • NLM

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/dcdsb.2022083
    • Vancouver

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3934/dcdsb.2022083
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 11 nov. 2024.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Qualitative Theory of Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SÁNCHEZ-SÁNCHEZ, Iván e TORREGROSA, Joan. Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, v. 21, n. 1, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12346-021-00546-x. Acesso em: 11 nov. 2024.
    • APA

      Oliveira, R. D. dos S., Sánchez-Sánchez, I., & Torregrosa, J. (2022). Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, 21( 1), 1-35. doi:10.1007/s12346-021-00546-x
    • NLM

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12346-021-00546-x
    • Vancouver

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12346-021-00546-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024