Source: Mathematical Methods in the Applied Sciences. Unidade: FZEA
Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, SIMETRIA, CÉLULAS
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
POLOVINKINA, Marina V. et al. Stability of stationary solutions for the glioma growth equations with radial or axial symmetries. Mathematical Methods in the Applied Sciences, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1002/mma.7194. Acesso em: 08 nov. 2024.APA
Polovinkina, M. V., Debbouche, A., Polovinkin, I. P., & David, S. A. (2021). Stability of stationary solutions for the glioma growth equations with radial or axial symmetries. Mathematical Methods in the Applied Sciences, 1-14. doi:10.1002/mma.7194NLM
Polovinkina MV, Debbouche A, Polovinkin IP, David SA. Stability of stationary solutions for the glioma growth equations with radial or axial symmetries [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 1-14.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1002/mma.7194Vancouver
Polovinkina MV, Debbouche A, Polovinkin IP, David SA. Stability of stationary solutions for the glioma growth equations with radial or axial symmetries [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 1-14.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1002/mma.7194