Filtros : "Argélia" "DAVID, SERGIO ADRIANI" Limpar

Filtros



Refine with date range


  • Source: Fractal and Fractional. Unidade: FZEA

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SIMULAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAVID, Sérgio Adriani e VALENTIM, Carlos Alberto e DEDDOUCHE, Amar. Fractional modeling applied to the dynamics of the action potential in cardiac tissue. Fractal and Fractional, v. 6, n. 3, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.3390/fractalfract6030149. Acesso em: 08 nov. 2024.
    • APA

      David, S. A., Valentim, C. A., & Deddouche, A. (2022). Fractional modeling applied to the dynamics of the action potential in cardiac tissue. Fractal and Fractional, 6( 3), 1-21. doi:10.3390/fractalfract6030149
    • NLM

      David SA, Valentim CA, Deddouche A. Fractional modeling applied to the dynamics of the action potential in cardiac tissue [Internet]. Fractal and Fractional. 2022 ; 6( 3): 1-21.[citado 2024 nov. 08 ] Available from: https://doi.org/10.3390/fractalfract6030149
    • Vancouver

      David SA, Valentim CA, Deddouche A. Fractional modeling applied to the dynamics of the action potential in cardiac tissue [Internet]. Fractal and Fractional. 2022 ; 6( 3): 1-21.[citado 2024 nov. 08 ] Available from: https://doi.org/10.3390/fractalfract6030149
  • Source: Mathematical Methods in the Applied Sciences. Unidade: FZEA

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, SIMETRIA, CÉLULAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POLOVINKINA, Marina V. et al. Stability of stationary solutions for the glioma growth equations with radial or axial symmetries. Mathematical Methods in the Applied Sciences, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1002/mma.7194. Acesso em: 08 nov. 2024.
    • APA

      Polovinkina, M. V., Debbouche, A., Polovinkin, I. P., & David, S. A. (2021). Stability of stationary solutions for the glioma growth equations with radial or axial symmetries. Mathematical Methods in the Applied Sciences, 1-14. doi:10.1002/mma.7194
    • NLM

      Polovinkina MV, Debbouche A, Polovinkin IP, David SA. Stability of stationary solutions for the glioma growth equations with radial or axial symmetries [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 1-14.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1002/mma.7194
    • Vancouver

      Polovinkina MV, Debbouche A, Polovinkin IP, David SA. Stability of stationary solutions for the glioma growth equations with radial or axial symmetries [Internet]. Mathematical Methods in the Applied Sciences. 2021 ; 1-14.[citado 2024 nov. 08 ] Available from: https://doi.org/10.1002/mma.7194

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024