Filtros : "TEORIA ASSINTÓTICA" "Melo, César Adolfo Hernández" Limpar

Filtros



Refine with date range


  • Source: Communications on Pure & Applied Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, TEORIA ASSINTÓTICA, OPERADORES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e MELO, César Adolfo Hernández. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction. Communications on Pure & Applied Analysis, v. 18, n. 4, p. 2093–2116, 2019Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2019094. Acesso em: 02 nov. 2024.
    • APA

      Pava, J. A., & Melo, C. A. H. (2019). On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction. Communications on Pure & Applied Analysis, 18( 4), 2093–2116. doi:10.3934/cpaa.2019094
    • NLM

      Pava JA, Melo CAH. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction [Internet]. Communications on Pure & Applied Analysis. 2019 ; 18( 4): 2093–2116.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/cpaa.2019094
    • Vancouver

      Pava JA, Melo CAH. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction [Internet]. Communications on Pure & Applied Analysis. 2019 ; 18( 4): 2093–2116.[citado 2024 nov. 02 ] Available from: https://doi.org/10.3934/cpaa.2019094

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024