Filtros : "NANOTECNOLOGIA" "IQ-QFL" "Estados Unidos" Removido: "VELASCO, MARIA VALERIA ROBLES" Limpar

Filtros



Refine with date range


  • Source: Bulletin of the American Physical Society. Conference titles: APS March Meeting. Unidade: IQ

    Assunto: NANOTECNOLOGIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Paulo Henrique Michels et al. Self-wrinkling large band-gap insulating nanosheets for graphene sensor applications. Bulletin of the American Physical Society. College Park: Instituto de Química, Universidade de São Paulo. Disponível em: https://flux.aps.org/meetings/YR23/MAR23/all_MAR23.pdf. Acesso em: 11 jul. 2024. , 2023
    • APA

      Brito, P. H. M., Pacakova, B., Toma, S. H., Araki, K., Breu, J., Dommrsnes, P., & Fossum, J. O. (2023). Self-wrinkling large band-gap insulating nanosheets for graphene sensor applications. Bulletin of the American Physical Society. College Park: Instituto de Química, Universidade de São Paulo. Recuperado de https://flux.aps.org/meetings/YR23/MAR23/all_MAR23.pdf
    • NLM

      Brito PHM, Pacakova B, Toma SH, Araki K, Breu J, Dommrsnes P, Fossum JO. Self-wrinkling large band-gap insulating nanosheets for graphene sensor applications [Internet]. Bulletin of the American Physical Society. 2023 ;[citado 2024 jul. 11 ] Available from: https://flux.aps.org/meetings/YR23/MAR23/all_MAR23.pdf
    • Vancouver

      Brito PHM, Pacakova B, Toma SH, Araki K, Breu J, Dommrsnes P, Fossum JO. Self-wrinkling large band-gap insulating nanosheets for graphene sensor applications [Internet]. Bulletin of the American Physical Society. 2023 ;[citado 2024 jul. 11 ] Available from: https://flux.aps.org/meetings/YR23/MAR23/all_MAR23.pdf
  • Source: Frontiers of Chemical Science and Engineering. Unidade: IQ

    Subjects: ELETROCATÁLISE, ÁGUA DO MAR, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Yu et al. NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting. Frontiers of Chemical Science and Engineering, v. 17, n. 11, p. 1698-1706, 2023Tradução . . Disponível em: https://dx.doi.org/10.1007/s11705-023-2334-8. Acesso em: 11 jul. 2024.
    • APA

      Liu, Y., Chen, L., Wang, Y., Dong, Y., Zhou, L., Torresi, S. I. C. de, et al. (2023). NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting. Frontiers of Chemical Science and Engineering, 17( 11), 1698-1706. doi:10.1007/s11705-023-2334-8
    • NLM

      Liu Y, Chen L, Wang Y, Dong Y, Zhou L, Torresi SIC de, Ozoemena KI, Yang X-Y. NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting [Internet]. Frontiers of Chemical Science and Engineering. 2023 ; 17( 11): 1698-1706.[citado 2024 jul. 11 ] Available from: https://dx.doi.org/10.1007/s11705-023-2334-8
    • Vancouver

      Liu Y, Chen L, Wang Y, Dong Y, Zhou L, Torresi SIC de, Ozoemena KI, Yang X-Y. NiFeRuOx nanosheets on Ni foam as an electrocatalyst for efficient overall alkaline seawater splitting [Internet]. Frontiers of Chemical Science and Engineering. 2023 ; 17( 11): 1698-1706.[citado 2024 jul. 11 ] Available from: https://dx.doi.org/10.1007/s11705-023-2334-8
  • Source: Modern luminescence from fundamental concepts to materials and applications. Unidades: IQ, IFSC

    Subjects: TERAPIA FOTODINÂMICA, NANOTECNOLOGIA, LUMINESCÊNCIA, TERRAS RARAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Helliomar Pereira et al. Nanocontrol of excitation and emission mechanism. Modern luminescence from fundamental concepts to materials and applications. Tradução . Cambridge, MA: Elsevier, 2023. . Disponível em: https://doi.org/10.1016/B978-0-323-89954-3.00010-7. Acesso em: 11 jul. 2024.
    • APA

      Barbosa, H. P., Bonturim, E., Merízio, L. G., Machado, I. P., Pedroso, C. C. S., & Brito, H. F. de. (2023). Nanocontrol of excitation and emission mechanism. In Modern luminescence from fundamental concepts to materials and applications. Cambridge, MA: Elsevier. doi:10.1016/B978-0-323-89954-3.00010-7
    • NLM

      Barbosa HP, Bonturim E, Merízio LG, Machado IP, Pedroso CCS, Brito HF de. Nanocontrol of excitation and emission mechanism [Internet]. In: Modern luminescence from fundamental concepts to materials and applications. Cambridge, MA: Elsevier; 2023. [citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/B978-0-323-89954-3.00010-7
    • Vancouver

      Barbosa HP, Bonturim E, Merízio LG, Machado IP, Pedroso CCS, Brito HF de. Nanocontrol of excitation and emission mechanism [Internet]. In: Modern luminescence from fundamental concepts to materials and applications. Cambridge, MA: Elsevier; 2023. [citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/B978-0-323-89954-3.00010-7
  • Source: Abstracts. Conference titles: International Conference on Raman Spectroscopy/ICORS. Unidade: IQ

    Subjects: NANOTECNOLOGIA, COBRE

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MIRANDA, Ester et al. Multifunctional copper nanocubes: a platform for SERS activity and specific CO2 reduction. 2022, Anais.. Long Beach: Instituto de Química, Universidade de São Paulo, 2022. Disponível em: https://www.mrs.org/docs/default-source/meetings-events/mrs-conference-services/2022/icors-2022/icors-2022_abstracts.pdf?sfvrsn=770d580e_9. Acesso em: 11 jul. 2024.
    • APA

      Miranda, E., Abreu, D. dos S. de, Lopes, D. dos S., & Corio, P. (2022). Multifunctional copper nanocubes: a platform for SERS activity and specific CO2 reduction. In Abstracts. Long Beach: Instituto de Química, Universidade de São Paulo. Recuperado de https://www.mrs.org/docs/default-source/meetings-events/mrs-conference-services/2022/icors-2022/icors-2022_abstracts.pdf?sfvrsn=770d580e_9
    • NLM

      Miranda E, Abreu D dos S de, Lopes D dos S, Corio P. Multifunctional copper nanocubes: a platform for SERS activity and specific CO2 reduction [Internet]. Abstracts. 2022 ;[citado 2024 jul. 11 ] Available from: https://www.mrs.org/docs/default-source/meetings-events/mrs-conference-services/2022/icors-2022/icors-2022_abstracts.pdf?sfvrsn=770d580e_9
    • Vancouver

      Miranda E, Abreu D dos S de, Lopes D dos S, Corio P. Multifunctional copper nanocubes: a platform for SERS activity and specific CO2 reduction [Internet]. Abstracts. 2022 ;[citado 2024 jul. 11 ] Available from: https://www.mrs.org/docs/default-source/meetings-events/mrs-conference-services/2022/icors-2022/icors-2022_abstracts.pdf?sfvrsn=770d580e_9
  • Source: ACS Catalysis. Unidade: IQ

    Subjects: CATÁLISE, LIPASE, MATERIAIS NANOESTRUTURADOS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARROS, Heloise Ribeiro de et al. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catalysis, v. 11, p. 414−423, 2021Tradução . . Disponível em: https://doi.org/10.1021/acscatal.0c04919. Acesso em: 11 jul. 2024.
    • APA

      Barros, H. R. de, García, I., Kuttner, C., Zeballos, N., Camargo, P. H. C. de, Torresi, S. I. C. de, et al. (2021). Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials. ACS Catalysis, 11, 414−423. doi:10.1021/acscatal.0c04919
    • NLM

      Barros HR de, García I, Kuttner C, Zeballos N, Camargo PHC de, Torresi SIC de, Gallego FL, Liz Marzán LM. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials [Internet]. ACS Catalysis. 2021 ; 11 414−423.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acscatal.0c04919
    • Vancouver

      Barros HR de, García I, Kuttner C, Zeballos N, Camargo PHC de, Torresi SIC de, Gallego FL, Liz Marzán LM. Mechanistic insights into the light-driven catalysis of an immobilized lipase on plasmonic nanomaterials [Internet]. ACS Catalysis. 2021 ; 11 414−423.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acscatal.0c04919
  • Source: Langmuir. Unidade: IQ

    Subjects: ARGILAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRITO, Paulo H. Michels et al. Unmodified clay nanosheets at the air–water interface. Langmuir, v. 37, n. 1, p. 160−170, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.langmuir.0c02670. Acesso em: 11 jul. 2024.
    • APA

      Brito, P. H. M., Gasperini, A. M., Mayr, L., Martinez, X. P., Tenório, R. P., Wagner, D. R., et al. (2021). Unmodified clay nanosheets at the air–water interface. Langmuir, 37( 1), 160−170. doi:10.1021/acs.langmuir.0c02670
    • NLM

      Brito PHM, Gasperini AM, Mayr L, Martinez XP, Tenório RP, Wagner DR, Knudsen KD, Araki K, Oliveira RG, Breu J, Cavalcanti LP, Fossum JO. Unmodified clay nanosheets at the air–water interface [Internet]. Langmuir. 2021 ; 37( 1): 160−170.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.langmuir.0c02670
    • Vancouver

      Brito PHM, Gasperini AM, Mayr L, Martinez XP, Tenório RP, Wagner DR, Knudsen KD, Araki K, Oliveira RG, Breu J, Cavalcanti LP, Fossum JO. Unmodified clay nanosheets at the air–water interface [Internet]. Langmuir. 2021 ; 37( 1): 160−170.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.langmuir.0c02670
  • Source: Nanoscale Advances. Unidade: IQ

    Subjects: NANOPARTÍCULAS, FLUORESCÊNCIA, NANOTECNOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Fernando Menegatti de et al. Solvophobic-controlled synthesis of smart magneto-fluorescent nanostructures for real-time inspection of metallic fractures. Nanoscale Advances, v. 3, p. 3593–3604, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1na00149c. Acesso em: 11 jul. 2024.
    • APA

      Melo, F. M. de, Mattioni, J. V., Dias, F., Fu, Y., & Toma, H. E. (2021). Solvophobic-controlled synthesis of smart magneto-fluorescent nanostructures for real-time inspection of metallic fractures. Nanoscale Advances, 3, 3593–3604. doi:10.1039/d1na00149c
    • NLM

      Melo FM de, Mattioni JV, Dias F, Fu Y, Toma HE. Solvophobic-controlled synthesis of smart magneto-fluorescent nanostructures for real-time inspection of metallic fractures [Internet]. Nanoscale Advances. 2021 ; 3 3593–3604.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1039/d1na00149c
    • Vancouver

      Melo FM de, Mattioni JV, Dias F, Fu Y, Toma HE. Solvophobic-controlled synthesis of smart magneto-fluorescent nanostructures for real-time inspection of metallic fractures [Internet]. Nanoscale Advances. 2021 ; 3 3593–3604.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1039/d1na00149c
  • Source: Electrochemistry Communications. Unidade: IQ

    Subjects: ELETROANÁLISE, NANOTECNOLOGIA, ELETROQUÍMICA, CELULOSE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TASIĆ, Nikola et al. Insights into electrochemical behavior in laser-scribed electrochemical paper-based analytical devices. Electrochemistry Communications, v. 121, p. 1-7 art. 106872, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.elecom.2020.106872. Acesso em: 11 jul. 2024.
    • APA

      Tasić, N., Martins, A. B., Yifei, X., Góes, M. S., Yerga, D. M., Mao, L., et al. (2020). Insights into electrochemical behavior in laser-scribed electrochemical paper-based analytical devices. Electrochemistry Communications, 121, 1-7 art. 106872. doi:10.1016/j.elecom.2020.106872
    • NLM

      Tasić N, Martins AB, Yifei X, Góes MS, Yerga DM, Mao L, Paixão TRLC da, Gonçalves LM. Insights into electrochemical behavior in laser-scribed electrochemical paper-based analytical devices [Internet]. Electrochemistry Communications. 2020 ; 121 1-7 art. 106872.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/j.elecom.2020.106872
    • Vancouver

      Tasić N, Martins AB, Yifei X, Góes MS, Yerga DM, Mao L, Paixão TRLC da, Gonçalves LM. Insights into electrochemical behavior in laser-scribed electrochemical paper-based analytical devices [Internet]. Electrochemistry Communications. 2020 ; 121 1-7 art. 106872.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/j.elecom.2020.106872
  • Source: ACS Applied Nano Materials. Unidades: IQ, FM, ICB, BIOTECNOLOGIA

    Subjects: ENDOCITOSE, ÍONS, IMUNOLOGIA, NANOTECNOLOGIA, MACRÓFAGOS, ZINCO, CITOTOXICIDADE IMUNOLÓGICA, MICROSCOPIA ELETRÔNICA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KHAN, Zahid Ullah et al. Orange-emitting ZnSe:Mn2+ quantum dots as nanoprobes for macrophages. ACS Applied Nano Materials, v. 3, n. 10, p. 10399−10410, 2020Tradução . . Disponível em: https://doi.org/10.1021/acsanm.0c02242. Acesso em: 11 jul. 2024.
    • APA

      Khan, Z. U., Uchiyama, M. K., Khan, L. U., Sanchez, E. M. R., Reis, L. C., Nakamura, M., et al. (2020). Orange-emitting ZnSe:Mn2+ quantum dots as nanoprobes for macrophages. ACS Applied Nano Materials, 3( 10), 10399−10410. doi:10.1021/acsanm.0c02242
    • NLM

      Khan ZU, Uchiyama MK, Khan LU, Sanchez EMR, Reis LC, Nakamura M, Goto H, Souza AO de, Araki K, Brito HF de, Gidlund MA. Orange-emitting ZnSe:Mn2+ quantum dots as nanoprobes for macrophages [Internet]. ACS Applied Nano Materials. 2020 ; 3( 10): 10399−10410.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acsanm.0c02242
    • Vancouver

      Khan ZU, Uchiyama MK, Khan LU, Sanchez EMR, Reis LC, Nakamura M, Goto H, Souza AO de, Araki K, Brito HF de, Gidlund MA. Orange-emitting ZnSe:Mn2+ quantum dots as nanoprobes for macrophages [Internet]. ACS Applied Nano Materials. 2020 ; 3( 10): 10399−10410.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acsanm.0c02242
  • Source: Advances in Inorganic Chemistry. Unidade: IQ

    Subjects: NANOTECNOLOGIA, CATALISADORES, OXIDAÇÃO, ÁGUA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Josué Martins et al. Electrocatalytic materials design for oxygen evolution reaction. Advances in Inorganic Chemistry, v. 74, p. 241-303, 2019Tradução . . Disponível em: https://doi.org/10.1016/bs.adioch.2019.03.002. Acesso em: 11 jul. 2024.
    • APA

      Gonçalves, J. M., Matias, T. A., Toledo, K. C. F., & Araki, K. (2019). Electrocatalytic materials design for oxygen evolution reaction. Advances in Inorganic Chemistry, 74, 241-303. doi:10.1016/bs.adioch.2019.03.002
    • NLM

      Gonçalves JM, Matias TA, Toledo KCF, Araki K. Electrocatalytic materials design for oxygen evolution reaction [Internet]. Advances in Inorganic Chemistry. 2019 ; 74 241-303.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/bs.adioch.2019.03.002
    • Vancouver

      Gonçalves JM, Matias TA, Toledo KCF, Araki K. Electrocatalytic materials design for oxygen evolution reaction [Internet]. Advances in Inorganic Chemistry. 2019 ; 74 241-303.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/bs.adioch.2019.03.002
  • Source: Accounts of Chemical Research. Unidade: IQ

    Subjects: ESPECTROSCOPIA RAMAN, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Diego P. dos e TEMPERINI, Márcia Laudelina Arruda e BROLO, Alexandre Guimaraes. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering. Accounts of Chemical Research, v. 52, n. 2, p. 456-464, 2019Tradução . . Disponível em: https://doi.org/10.1021/acs.accounts.8b00563. Acesso em: 11 jul. 2024.
    • APA

      Santos, D. P. dos, Temperini, M. L. A., & Brolo, A. G. (2019). Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 52( 2), 456-464. doi:10.1021/acs.accounts.8b00563
    • NLM

      Santos DP dos, Temperini MLA, Brolo AG. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering [Internet]. Accounts of Chemical Research. 2019 ; 52( 2): 456-464.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.accounts.8b00563
    • Vancouver

      Santos DP dos, Temperini MLA, Brolo AG. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering [Internet]. Accounts of Chemical Research. 2019 ; 52( 2): 456-464.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.accounts.8b00563
  • Source: Biosensors and Bioelectronics. Unidade: IQ

    Subjects: DENGUE, FILMES FINOS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIRICH, Cleverton Luiz et al. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosensors and Bioelectronics, v. 92, p. 47-53, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.bios.2017.01.068. Acesso em: 11 jul. 2024.
    • APA

      Pirich, C. L., Freitas, R. A. de, Torresi, R. M., Picheth, G. F., & Sierakowski, M. R. (2017). Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosensors and Bioelectronics, 92, 47-53. doi:10.1016/j.bios.2017.01.068
    • NLM

      Pirich CL, Freitas RA de, Torresi RM, Picheth GF, Sierakowski MR. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection [Internet]. Biosensors and Bioelectronics. 2017 ; 92 47-53.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/j.bios.2017.01.068
    • Vancouver

      Pirich CL, Freitas RA de, Torresi RM, Picheth GF, Sierakowski MR. Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection [Internet]. Biosensors and Bioelectronics. 2017 ; 92 47-53.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1016/j.bios.2017.01.068
  • Source: Journal of Biological Inorganic Chemistry. Conference titles: International Conference on Biological Inorganic Chemistry/ICBIC. Unidade: IQ

    Subjects: ENZIMAS, NANOTECNOLOGIA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMA, Henrique Eisi. A nanotechnological approach to bioinorganic chemistry. Journal of Biological Inorganic Chemistry. New York: Instituto de Química, Universidade de São Paulo. Disponível em: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs00775-017-1475-y.pdf. Acesso em: 11 jul. 2024. , 2017
    • APA

      Toma, H. E. (2017). A nanotechnological approach to bioinorganic chemistry. Journal of Biological Inorganic Chemistry. New York: Instituto de Química, Universidade de São Paulo. Recuperado de https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs00775-017-1475-y.pdf
    • NLM

      Toma HE. A nanotechnological approach to bioinorganic chemistry [Internet]. Journal of Biological Inorganic Chemistry. 2017 ; 22 S177.[citado 2024 jul. 11 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs00775-017-1475-y.pdf
    • Vancouver

      Toma HE. A nanotechnological approach to bioinorganic chemistry [Internet]. Journal of Biological Inorganic Chemistry. 2017 ; 22 S177.[citado 2024 jul. 11 ] Available from: https://link-springer-com.ez67.periodicos.capes.gov.br/content/pdf/10.1007%2Fs00775-017-1475-y.pdf
  • Source: Plasmonics. Unidade: IQ

    Subjects: ESPECTROSCOPIA RAMAN, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMEZ ARMAS, Luis Enrique et al. Gold Nanohole arrays fabricated by interference lithography technique as SERS probes for chemical species such as rhodamine 6G and 4,4′-Bipyridine. Plasmonics, v. 12, n. 4, p. 1015-1020, 2017Tradução . . Disponível em: https://doi.org/10.1007/s11468-016-0353-8. Acesso em: 11 jul. 2024.
    • APA

      Gomez Armas, L. E., Menezes, J. W., Gonzalez Huila, M. F., Araki, K., & Toma, H. E. (2017). Gold Nanohole arrays fabricated by interference lithography technique as SERS probes for chemical species such as rhodamine 6G and 4,4′-Bipyridine. Plasmonics, 12( 4), 1015-1020. doi:10.1007/s11468-016-0353-8
    • NLM

      Gomez Armas LE, Menezes JW, Gonzalez Huila MF, Araki K, Toma HE. Gold Nanohole arrays fabricated by interference lithography technique as SERS probes for chemical species such as rhodamine 6G and 4,4′-Bipyridine [Internet]. Plasmonics. 2017 ; 12( 4): 1015-1020.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1007/s11468-016-0353-8
    • Vancouver

      Gomez Armas LE, Menezes JW, Gonzalez Huila MF, Araki K, Toma HE. Gold Nanohole arrays fabricated by interference lithography technique as SERS probes for chemical species such as rhodamine 6G and 4,4′-Bipyridine [Internet]. Plasmonics. 2017 ; 12( 4): 1015-1020.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1007/s11468-016-0353-8
  • Source: Chemical Communications. Unidade: IQ

    Subjects: NANOTECNOLOGIA, MATERIAIS NANOESTRUTURADOS, CATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson G. M. da et al. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, v. 53, p. 7135-7148, 2017Tradução . . Disponível em: https://doi.org/10.1039/c7cc02352a. Acesso em: 11 jul. 2024.
    • APA

      Silva, A. G. M. da, Rodrigues, T. S., Haigh, S. J., & Camargo, P. H. C. de. (2017). Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 53, 7135-7148. doi:10.1039/c7cc02352a
    • NLM

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1039/c7cc02352a
    • Vancouver

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1039/c7cc02352a
  • Source: Journal of Chemical Education. Unidade: IQ

    Subjects: NANOTECNOLOGIA, QUÍMICA INORGÂNICA, MULTIDISCIPLINARIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson Gabriel Marques da et al. Controlled synthesis of nanomaterials at the undergraduate laboratory: Cu(OH)' IND. 2' and CuO nanowires. Journal of Chemical Education, v. 94, n. 6, p. 743-750, 2017Tradução . . Disponível em: https://doi.org/10.1021/acs.jchemed.6b00185. Acesso em: 11 jul. 2024.
    • APA

      Silva, A. G. M. da, Rodrigues, T. S., Parússulo, A. L. A., Candido, E. G., Geonmonond, R. dos S., Brito, H. F. de, et al. (2017). Controlled synthesis of nanomaterials at the undergraduate laboratory: Cu(OH)' IND. 2' and CuO nanowires. Journal of Chemical Education, 94( 6), 743-750. doi:10.1021/acs.jchemed.6b00185
    • NLM

      Silva AGM da, Rodrigues TS, Parússulo ALA, Candido EG, Geonmonond R dos S, Brito HF de, Toma HE, Camargo PHC de. Controlled synthesis of nanomaterials at the undergraduate laboratory: Cu(OH)' IND. 2' and CuO nanowires [Internet]. Journal of Chemical Education. 2017 ; 94( 6): 743-750.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.jchemed.6b00185
    • Vancouver

      Silva AGM da, Rodrigues TS, Parússulo ALA, Candido EG, Geonmonond R dos S, Brito HF de, Toma HE, Camargo PHC de. Controlled synthesis of nanomaterials at the undergraduate laboratory: Cu(OH)' IND. 2' and CuO nanowires [Internet]. Journal of Chemical Education. 2017 ; 94( 6): 743-750.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.jchemed.6b00185
  • Source: ACS nano. Unidade: IQ

    Subjects: PRATA, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Robson Rosa da et al. Facile synthesis of Sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS nano, v. 10, n. 8, p. 7892-7900, 2016Tradução . . Disponível em: https://doi.org/10.1021/acsnano.6b03806. Acesso em: 11 jul. 2024.
    • APA

      Silva, R. R. da, Yang, M., Choi, S. -I., Chi, M., Luo, M., Zhang, C., et al. (2016). Facile synthesis of Sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS nano, 10( 8), 7892-7900. doi:10.1021/acsnano.6b03806
    • NLM

      Silva RR da, Yang M, Choi S-I, Chi M, Luo M, Zhang C, Li Z-Y, Camargo PHC de, Ribeiro SJL, Xia Y. Facile synthesis of Sub-20 nm silver nanowires through a bromide-mediated polyol method [Internet]. ACS nano. 2016 ; 10( 8): 7892-7900.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acsnano.6b03806
    • Vancouver

      Silva RR da, Yang M, Choi S-I, Chi M, Luo M, Zhang C, Li Z-Y, Camargo PHC de, Ribeiro SJL, Xia Y. Facile synthesis of Sub-20 nm silver nanowires through a bromide-mediated polyol method [Internet]. ACS nano. 2016 ; 10( 8): 7892-7900.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acsnano.6b03806
  • Source: Technical Program. Conference titles: American Chemical Society National Meeting & Exposition. Unidade: IQ

    Subjects: CELULOSE, NANOTECNOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETRI, Denise Freitas Siqueira et al. Impact of bacterial cellulose nanocrystals charge density on the interaction with xyloglucan. 2016, Anais.. Washington: American Chemical Society (ACS), 2016. . Acesso em: 11 jul. 2024.
    • APA

      Petri, D. F. S., Pirich, C. L., Sierakowski, M. R., & Freitas, R. A. de. (2016). Impact of bacterial cellulose nanocrystals charge density on the interaction with xyloglucan. In Technical Program. Washington: American Chemical Society (ACS).
    • NLM

      Petri DFS, Pirich CL, Sierakowski MR, Freitas RA de. Impact of bacterial cellulose nanocrystals charge density on the interaction with xyloglucan. Technical Program. 2016 ;[citado 2024 jul. 11 ]
    • Vancouver

      Petri DFS, Pirich CL, Sierakowski MR, Freitas RA de. Impact of bacterial cellulose nanocrystals charge density on the interaction with xyloglucan. Technical Program. 2016 ;[citado 2024 jul. 11 ]
  • Source: Journal of Chemical Education. Unidade: IQ

    Subjects: QUÍMICA AMBIENTAL, NANOPARTÍCULAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Delmárcio Gomes da et al. Introducing environmental and sustainable chemistry topics using a nanotechnology approach: removing hazardous metal ions by means of humic-acid-modified superparamagnetic nanoparticles. Journal of Chemical Education, v. 93, n. 11, p. 1929-1934, 2016Tradução . . Disponível em: https://doi.org/10.1021/acs.jchemed.6b00172. Acesso em: 11 jul. 2024.
    • APA

      Silva, D. G. da, Melo, F. M. de, Silveira Junior, A. T., Cruz, B. C. da, Prado, C. C. P., Vasconcelos, L. C. P. de, et al. (2016). Introducing environmental and sustainable chemistry topics using a nanotechnology approach: removing hazardous metal ions by means of humic-acid-modified superparamagnetic nanoparticles. Journal of Chemical Education, 93( 11), 1929-1934. doi:10.1021/acs.jchemed.6b00172
    • NLM

      Silva DG da, Melo FM de, Silveira Junior AT, Cruz BC da, Prado CCP, Vasconcelos LCP de, Lucas VAS, Toma HE. Introducing environmental and sustainable chemistry topics using a nanotechnology approach: removing hazardous metal ions by means of humic-acid-modified superparamagnetic nanoparticles [Internet]. Journal of Chemical Education. 2016 ; 93( 11): 1929-1934.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.jchemed.6b00172
    • Vancouver

      Silva DG da, Melo FM de, Silveira Junior AT, Cruz BC da, Prado CCP, Vasconcelos LCP de, Lucas VAS, Toma HE. Introducing environmental and sustainable chemistry topics using a nanotechnology approach: removing hazardous metal ions by means of humic-acid-modified superparamagnetic nanoparticles [Internet]. Journal of Chemical Education. 2016 ; 93( 11): 1929-1934.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1021/acs.jchemed.6b00172
  • Source: Journal of Materials Science. Unidade: IQ

    Subjects: NANOPARTÍCULAS, NANOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Thenner Silva et al. Probing the catalytic activity of bimetallic versus trimetallic nanoshells. Journal of Materials Science, v. 50, n. 16, p. 5620-5629, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10853-015-9114-x. Acesso em: 11 jul. 2024.
    • APA

      Rodrigues, T. S., Silva, A. G. M. da, Macedo, A., Farini, B. W., Alves, R. da S., & Camargo, P. H. C. de. (2015). Probing the catalytic activity of bimetallic versus trimetallic nanoshells. Journal of Materials Science, 50( 16), 5620-5629. doi:10.1007/s10853-015-9114-x
    • NLM

      Rodrigues TS, Silva AGM da, Macedo A, Farini BW, Alves R da S, Camargo PHC de. Probing the catalytic activity of bimetallic versus trimetallic nanoshells [Internet]. Journal of Materials Science. 2015 ; 50( 16): 5620-5629.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1007/s10853-015-9114-x
    • Vancouver

      Rodrigues TS, Silva AGM da, Macedo A, Farini BW, Alves R da S, Camargo PHC de. Probing the catalytic activity of bimetallic versus trimetallic nanoshells [Internet]. Journal of Materials Science. 2015 ; 50( 16): 5620-5629.[citado 2024 jul. 11 ] Available from: https://doi.org/10.1007/s10853-015-9114-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024