Filtros : "ESPAÇOS DE BANACH" "Indexado no Scopus" Removido: "IQ009" Limpar

Filtros



Refine with date range


  • Source: Journal of the Institute of Mathematics of Jussieu. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERENCZI, Valentin e ROSENDAL, Christian. Non-unitarisable representations and maximal symmetry. Journal of the Institute of Mathematics of Jussieu, v. 16, n. 2, p. 421-445, 2017Tradução . . Disponível em: https://doi.org/10.1017/S1474748015000195. Acesso em: 14 nov. 2024.
    • APA

      Ferenczi, V., & Rosendal, C. (2017). Non-unitarisable representations and maximal symmetry. Journal of the Institute of Mathematics of Jussieu, 16( 2), 421-445. doi:10.1017/S1474748015000195
    • NLM

      Ferenczi V, Rosendal C. Non-unitarisable representations and maximal symmetry [Internet]. Journal of the Institute of Mathematics of Jussieu. 2017 ; 16( 2): 421-445.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1017/S1474748015000195
    • Vancouver

      Ferenczi V, Rosendal C. Non-unitarisable representations and maximal symmetry [Internet]. Journal of the Institute of Mathematics of Jussieu. 2017 ; 16( 2): 421-445.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1017/S1474748015000195
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e RINCÓN VILLAMIZAR, Michael Alexander. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R?. Journal of Mathematical Analysis and Applications, v. 437, n. 1, p. 590-604, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2016.01.025. Acesso em: 14 nov. 2024.
    • APA

      Galego, E. M., & Rincón Villamizar, M. A. (2016). When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? Journal of Mathematical Analysis and Applications, 437( 1), 590-604. doi:10.1016/j.jmaa.2016.01.025
    • NLM

      Galego EM, Rincón Villamizar MA. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 437( 1): 590-604.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2016.01.025
    • Vancouver

      Galego EM, Rincón Villamizar MA. When do the C0(1)(K,X) spaces determine the locally compact subspaces K of the real line R? [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 437( 1): 590-604.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2016.01.025
  • Source: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARRIÓN, Humberto e GALINDO, Pablo e LOURENÇO, Mary Lilian. A holomorphic characterization of compact sets in Banach spaces. Bulletin of the Brazilian Mathematical Society, New Series, v. 47, n. 3, p. 863–869, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00574-016-0115-4. Acesso em: 14 nov. 2024.
    • APA

      Carrión, H., Galindo, P., & Lourenço, M. L. (2016). A holomorphic characterization of compact sets in Banach spaces. Bulletin of the Brazilian Mathematical Society, New Series, 47( 3), 863–869. doi:10.1007/s00574-016-0115-4
    • NLM

      Carrión H, Galindo P, Lourenço ML. A holomorphic characterization of compact sets in Banach spaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2016 ; 47( 3): 863–869.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00574-016-0115-4
    • Vancouver

      Carrión H, Galindo P, Lourenço ML. A holomorphic characterization of compact sets in Banach spaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2016 ; 47( 3): 863–869.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00574-016-0115-4
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ÁLGEBRAS DE BOOLE, INDEPENDÊNCIA E CONSISTÊNCIA, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina e KOSZMIDER, Piotr. An isometrically universal Banach space induced by a non-universal Boolean algebra. Proceedings of the American Mathematical Society, v. 144, n. 5, p. 2029-2036, 2016Tradução . . Disponível em: https://doi.org/10.1090/proc/12862. Acesso em: 14 nov. 2024.
    • APA

      Brech, C., & Koszmider, P. (2016). An isometrically universal Banach space induced by a non-universal Boolean algebra. Proceedings of the American Mathematical Society, 144( 5), 2029-2036. doi:10.1090/proc/12862
    • NLM

      Brech C, Koszmider P. An isometrically universal Banach space induced by a non-universal Boolean algebra [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( 5): 2029-2036.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1090/proc/12862
    • Vancouver

      Brech C, Koszmider P. An isometrically universal Banach space induced by a non-universal Boolean algebra [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( 5): 2029-2036.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1090/proc/12862
  • Source: Journal of Functional Analysis. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Claudia e TAUSK, Daniel Victor. Nontrivial twisted sums of c0 and C(K). Journal of Functional Analysis, v. 270, n. 15 Ja 2016, p. 842–853, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.jfa.2015.11.002. Acesso em: 14 nov. 2024.
    • APA

      Correa, C., & Tausk, D. V. (2016). Nontrivial twisted sums of c0 and C(K). Journal of Functional Analysis, 270( 15 Ja 2016), 842–853. doi:10.1016/j.jfa.2015.11.002
    • NLM

      Correa C, Tausk DV. Nontrivial twisted sums of c0 and C(K) [Internet]. Journal of Functional Analysis. 2016 ; 270( 15 Ja 2016): 842–853.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jfa.2015.11.002
    • Vancouver

      Correa C, Tausk DV. Nontrivial twisted sums of c0 and C(K) [Internet]. Journal of Functional Analysis. 2016 ; 270( 15 Ja 2016): 842–853.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jfa.2015.11.002
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e SAMUEL, Christian. The subprojectivity of the projective tensor product of two C(K) spaces with |K|=ℵ0. Proceedings of the American Mathematical Society, v. 144, n. 6, p. 2611-2617, 2016Tradução . . Disponível em: https://doi.org/10.1090/proc/12926. Acesso em: 14 nov. 2024.
    • APA

      Galego, E. M., & Samuel, C. (2016). The subprojectivity of the projective tensor product of two C(K) spaces with |K|=ℵ0. Proceedings of the American Mathematical Society, 144( 6), 2611-2617. doi:10.1090/proc/12926
    • NLM

      Galego EM, Samuel C. The subprojectivity of the projective tensor product of two C(K) spaces with |K|=ℵ0 [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( 6): 2611-2617.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1090/proc/12926
    • Vancouver

      Galego EM, Samuel C. The subprojectivity of the projective tensor product of two C(K) spaces with |K|=ℵ0 [Internet]. Proceedings of the American Mathematical Society. 2016 ; 144( 6): 2611-2617.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1090/proc/12926
  • Source: Bulletin des Sciences Mathématiques. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e RINCÓN VILLAMIZAR, Michael Alexander. Weak forms of Banach–Stone theorem for C0(K,X)C0(K,X) spaces via the αth derivatives of K. Bulletin des Sciences Mathématiques, v. 139, n. 8, p. 880-891, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2015.04.002. Acesso em: 14 nov. 2024.
    • APA

      Galego, E. M., & Rincón Villamizar, M. A. (2015). Weak forms of Banach–Stone theorem for C0(K,X)C0(K,X) spaces via the αth derivatives of K. Bulletin des Sciences Mathématiques, 139( 8), 880-891. doi:10.1016/j.bulsci.2015.04.002
    • NLM

      Galego EM, Rincón Villamizar MA. Weak forms of Banach–Stone theorem for C0(K,X)C0(K,X) spaces via the αth derivatives of K [Internet]. Bulletin des Sciences Mathématiques. 2015 ; 139( 8): 880-891.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.bulsci.2015.04.002
    • Vancouver

      Galego EM, Rincón Villamizar MA. Weak forms of Banach–Stone theorem for C0(K,X)C0(K,X) spaces via the αth derivatives of K [Internet]. Bulletin des Sciences Mathématiques. 2015 ; 139( 8): 880-891.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.bulsci.2015.04.002
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALSPACH, Dale E e GALEGO, Eloi Medina. A complete classification of the spaces of compact operators on C([1,α],lp) spaces, 1. Proceedings of the American Mathematical Society, v. 143, n. 6, p. 2495-2506, 2015Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-2015-12441-0. Acesso em: 14 nov. 2024.
    • APA

      Alspach, D. E., & Galego, E. M. (2015). A complete classification of the spaces of compact operators on C([1,α],lp) spaces, 1Proceedings of the American Mathematical Society, 143( 6), 2495-2506. doi:10.1090/S0002-9939-2015-12441-0
    • NLM

      Alspach DE, Galego EM. A complete classification of the spaces of compact operators on C([1,α],lp) spaces, 1
    • Vancouver

      Alspach DE, Galego EM. A complete classification of the spaces of compact operators on C([1,α],lp) spaces, 1
  • Source: Colloquium Mathematicum. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e ZAHN, Maurício. A quasi-dichotomy for C(α,X) spaces, α<ω1. Colloquium Mathematicum, v. 141, n. 1, p. 51-59, 2015Tradução . . Disponível em: https://doi.org/10.4064/cm141-1-5. Acesso em: 14 nov. 2024.
    • APA

      Galego, E. M., & Zahn, M. (2015). A quasi-dichotomy for C(α,X) spaces, α<ω1. Colloquium Mathematicum, 141( 1), 51-59. doi:10.4064/cm141-1-5
    • NLM

      Galego EM, Zahn M. A quasi-dichotomy for C(α,X) spaces, α<ω1 [Internet]. Colloquium Mathematicum. 2015 ; 141( 1): 51-59.[citado 2024 nov. 14 ] Available from: https://doi.org/10.4064/cm141-1-5
    • Vancouver

      Galego EM, Zahn M. A quasi-dichotomy for C(α,X) spaces, α<ω1 [Internet]. Colloquium Mathematicum. 2015 ; 141( 1): 51-59.[citado 2024 nov. 14 ] Available from: https://doi.org/10.4064/cm141-1-5
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: GRAU TOPOLÓGICO, ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e CALAMAI, Alessandro e FURI, Massimo. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 401-430, 2015Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2015.052. Acesso em: 14 nov. 2024.
    • APA

      Benevieri, P., Calamai, A., & Furi, M. (2015). On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree. Topological Methods in Nonlinear Analysis, 46( 1), 401-430. doi:10.12775/TMNA.2015.052
    • NLM

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2024 nov. 14 ] Available from: https://doi.org/10.12775/TMNA.2015.052
    • Vancouver

      Benevieri P, Calamai A, Furi M. On the degree for oriented quasi-Fredholm maps: its uniqueness and its effective extension of the Leray–Schauder degree [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 401-430.[citado 2024 nov. 14 ] Available from: https://doi.org/10.12775/TMNA.2015.052
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL, Fabiano Carlos e GALEGO, Eloi Medina e RINCÓN VILLAMIZAR, Michael Alexander. Optimal extensions of the Banach–Stone theorem. Journal of Mathematical Analysis and Applications, v. 430, n. 1, p. 193–204, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.04.060. Acesso em: 14 nov. 2024.
    • APA

      Cidral, F. C., Galego, E. M., & Rincón Villamizar, M. A. (2015). Optimal extensions of the Banach–Stone theorem. Journal of Mathematical Analysis and Applications, 430( 1), 193–204. doi:10.1016/j.jmaa.2015.04.060
    • NLM

      Cidral FC, Galego EM, Rincón Villamizar MA. Optimal extensions of the Banach–Stone theorem [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 430( 1): 193–204.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.060
    • Vancouver

      Cidral FC, Galego EM, Rincón Villamizar MA. Optimal extensions of the Banach–Stone theorem [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 430( 1): 193–204.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2015.04.060
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina e ZAHN, Maurício. On the isomorphic classification of C(K, X) spaces. Journal of Mathematical Analysis and Applications, v. 01 No 2015, n. 1, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.05.080. Acesso em: 14 nov. 2024.
    • APA

      Galego, E. M., & Zahn, M. (2015). On the isomorphic classification of C(K, X) spaces. Journal of Mathematical Analysis and Applications, 01 No 2015( 1). doi:10.1016/j.jmaa.2015.05.080
    • NLM

      Galego EM, Zahn M. On the isomorphic classification of C(K, X) spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 01 No 2015( 1):[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2015.05.080
    • Vancouver

      Galego EM, Zahn M. On the isomorphic classification of C(K, X) spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 01 No 2015( 1):[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2015.05.080
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Claudia e TAUSK, Daniel Victor. On the c0-extension property for compact lines. Journal of Mathematical Analysis and Applications, v. 428, n. 1, p. 184-193, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2015.03.022. Acesso em: 14 nov. 2024.
    • APA

      Correa, C., & Tausk, D. V. (2015). On the c0-extension property for compact lines. Journal of Mathematical Analysis and Applications, 428( 1), 184-193. doi:10.1016/j.jmaa.2015.03.022
    • NLM

      Correa C, Tausk DV. On the c0-extension property for compact lines [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 1): 184-193.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.022
    • Vancouver

      Correa C, Tausk DV. On the c0-extension property for compact lines [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 1): 184-193.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1016/j.jmaa.2015.03.022
  • Source: Results in Mathematics. Unidade: IME

    Subjects: ESPAÇOS DE BANACH, GEOMETRIA DE ESPAÇOS DE BANACH, ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Claudia e TAUSK, Daniel Victor. Extension property and complementation of isometric copies of continuous functions spaces. Results in Mathematics, v. 67, n. 3-4, p. 445-455, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00025-014-0411-5. Acesso em: 14 nov. 2024.
    • APA

      Correa, C., & Tausk, D. V. (2015). Extension property and complementation of isometric copies of continuous functions spaces. Results in Mathematics, 67( 3-4), 445-455. doi:10.1007/s00025-014-0411-5
    • NLM

      Correa C, Tausk DV. Extension property and complementation of isometric copies of continuous functions spaces [Internet]. Results in Mathematics. 2015 ; 67( 3-4): 445-455.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00025-014-0411-5
    • Vancouver

      Correa C, Tausk DV. Extension property and complementation of isometric copies of continuous functions spaces [Internet]. Results in Mathematics. 2015 ; 67( 3-4): 445-455.[citado 2024 nov. 14 ] Available from: https://doi.org/10.1007/s00025-014-0411-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024