Filtros : "BIOCOMBUSTÍVEIS" "Indexado na Web of Science" Removido: "IFSC" Limpar

Filtros



Refine with date range


  • Source: Chemical Engineering Journal. Unidade: EESC

    Subjects: CANA-DE-AÇÚCAR, VINHAÇA, BIODIGESTORES, ENGENHARIA HIDRÁULICA, BIOCOMBUSTÍVEIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUESS, Lucas Tadeu et al. Solving the seasonality issue in sugarcane biorefineries: high-rate year-round methane production from fermented sulfate-free vinasse and molasses. Chemical Engineering Journal, v. 478, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.cej.2022.140965. Acesso em: 16 out. 2024.
    • APA

      Fuess, L. T., Braga, A. F. M., Zaiat, M., & Lens, P. N. L. (2023). Solving the seasonality issue in sugarcane biorefineries: high-rate year-round methane production from fermented sulfate-free vinasse and molasses. Chemical Engineering Journal, 478, 1-15. doi:10.1016/j.cej.2023.147432
    • NLM

      Fuess LT, Braga AFM, Zaiat M, Lens PNL. Solving the seasonality issue in sugarcane biorefineries: high-rate year-round methane production from fermented sulfate-free vinasse and molasses [Internet]. Chemical Engineering Journal. 2023 ; 478 1-15.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.cej.2022.140965
    • Vancouver

      Fuess LT, Braga AFM, Zaiat M, Lens PNL. Solving the seasonality issue in sugarcane biorefineries: high-rate year-round methane production from fermented sulfate-free vinasse and molasses [Internet]. Chemical Engineering Journal. 2023 ; 478 1-15.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.cej.2022.140965
  • Source: Electrochimica Acta. Unidade: IQSC

    Assunto: BIOCOMBUSTÍVEIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARO, M. Lo et al. Exploring the use of bioethanol for high-temperature electrolysis of water. Electrochimica Acta, v. 466, p. 143009, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.electacta.2023.143009. Acesso em: 16 out. 2024.
    • APA

      Faro, M. L., Ometto, F. B., Zignani, S. C., Mantilla, S. V., Perez, J., & Ticianelli, E. A. (2023). Exploring the use of bioethanol for high-temperature electrolysis of water. Electrochimica Acta, 466, 143009. doi:10.1016/j.electacta.2023.143009
    • NLM

      Faro ML, Ometto FB, Zignani SC, Mantilla SV, Perez J, Ticianelli EA. Exploring the use of bioethanol for high-temperature electrolysis of water [Internet]. Electrochimica Acta. 2023 ;466 143009.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.electacta.2023.143009
    • Vancouver

      Faro ML, Ometto FB, Zignani SC, Mantilla SV, Perez J, Ticianelli EA. Exploring the use of bioethanol for high-temperature electrolysis of water [Internet]. Electrochimica Acta. 2023 ;466 143009.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.electacta.2023.143009
  • Source: Biomass and Bioenergy. Unidade: EESC

    Subjects: BIOCOMBUSTÍVEIS, BAGAÇOS, CANA-DE-AÇÚCAR, ENGENHARIA HIDRÁULICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Laís Américo et al. Valorization of sugarcane bagasse through biofuel and value-added soluble metabolites production: optimization of alkaline hydrothermal pretreatment. Biomass and Bioenergy, p. 1-7, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.biombioe.2022.106564. Acesso em: 16 out. 2024.
    • APA

      Soares, L. A., Solano, M. G., Lindeboom, R. E. F., van Lier, J. B., Silva, E. L., & Varesche, M. B. A. (2022). Valorization of sugarcane bagasse through biofuel and value-added soluble metabolites production: optimization of alkaline hydrothermal pretreatment. Biomass and Bioenergy, 1-7. doi:10.1016/j.biombioe.2022.106564
    • NLM

      Soares LA, Solano MG, Lindeboom REF, van Lier JB, Silva EL, Varesche MBA. Valorization of sugarcane bagasse through biofuel and value-added soluble metabolites production: optimization of alkaline hydrothermal pretreatment [Internet]. Biomass and Bioenergy. 2022 ; 1-7.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.biombioe.2022.106564
    • Vancouver

      Soares LA, Solano MG, Lindeboom REF, van Lier JB, Silva EL, Varesche MBA. Valorization of sugarcane bagasse through biofuel and value-added soluble metabolites production: optimization of alkaline hydrothermal pretreatment [Internet]. Biomass and Bioenergy. 2022 ; 1-7.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.biombioe.2022.106564
  • Source: Journal of Magnetic Resonance. Unidade: IQSC

    Subjects: AGRICULTURA, ALIMENTOS, BIOCOMBUSTÍVEIS, FRUTAS, RESSONÂNCIA MAGNÉTICA NUCLEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLNAGO, Luiz Alberto et al. Low field, time domain NMR in the agriculture and agrifood sector: An overview of applications in plants, foods and biofuels. Journal of Magnetic Resonance, v. fe 2021, p. 106899, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmr.2020.106899. Acesso em: 16 out. 2024.
    • APA

      Colnago, L. A., Wiesman, Z., Pages, G., Musse, M., Monaretto, T., Windt, C. W., & Rondeau-Mouro, C. (2021). Low field, time domain NMR in the agriculture and agrifood sector: An overview of applications in plants, foods and biofuels. Journal of Magnetic Resonance, fe 2021, 106899. doi:10.1016/j.jmr.2020.106899
    • NLM

      Colnago LA, Wiesman Z, Pages G, Musse M, Monaretto T, Windt CW, Rondeau-Mouro C. Low field, time domain NMR in the agriculture and agrifood sector: An overview of applications in plants, foods and biofuels [Internet]. Journal of Magnetic Resonance. 2021 ; fe 2021 106899.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.jmr.2020.106899
    • Vancouver

      Colnago LA, Wiesman Z, Pages G, Musse M, Monaretto T, Windt CW, Rondeau-Mouro C. Low field, time domain NMR in the agriculture and agrifood sector: An overview of applications in plants, foods and biofuels [Internet]. Journal of Magnetic Resonance. 2021 ; fe 2021 106899.[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.jmr.2020.106899
  • Source: Biomass and Bioenergy. Unidade: EESC

    Subjects: ENGENHARIA HIDRÁULICA, BAGAÇOS, CANA-DE-AÇÚCAR, BIOCOMBUSTÍVEIS, CELULOSE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAGA, Juliana Kawanishi et al. Metals addition for enhanced hydrogen, acetic and butyric acids production from cellulosic substrates by Clostridium butyricum. Biomass and Bioenergy, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.biombioe.2020.105679. Acesso em: 16 out. 2024.
    • APA

      Braga, J. K., Stancari, R. A., Motteran, F., Malavazi, I., & Varesche, M. B. A. (2020). Metals addition for enhanced hydrogen, acetic and butyric acids production from cellulosic substrates by Clostridium butyricum. Biomass and Bioenergy. doi:10.1016/j.biombioe.2020.105679
    • NLM

      Braga JK, Stancari RA, Motteran F, Malavazi I, Varesche MBA. Metals addition for enhanced hydrogen, acetic and butyric acids production from cellulosic substrates by Clostridium butyricum [Internet]. Biomass and Bioenergy. 2020 ;[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.biombioe.2020.105679
    • Vancouver

      Braga JK, Stancari RA, Motteran F, Malavazi I, Varesche MBA. Metals addition for enhanced hydrogen, acetic and butyric acids production from cellulosic substrates by Clostridium butyricum [Internet]. Biomass and Bioenergy. 2020 ;[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.biombioe.2020.105679
  • Source: Polymers. Unidade: IQSC

    Subjects: POLÍMEROS (QUÍMICA ORGÂNICA), BIOCOMBUSTÍVEIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NARDELI, Jéssica Verger et al. Preparation of polyurethane monolithic resins and modification with a condensed tannin-yielding self-healing property. Polymers, v. 11, n. 11, 2019Tradução . . Disponível em: https://doi.org/10.3390/polym11111890. Acesso em: 16 out. 2024.
    • APA

      Nardeli, J. V., Fugivara, C. S., Pinto, E. R. P., Polito, W. L., Messaddeq, Y., Ribeiro, S. J. L., & Benedetti, A. V. (2019). Preparation of polyurethane monolithic resins and modification with a condensed tannin-yielding self-healing property. Polymers, 11( 11). doi:10.3390/polym11111890
    • NLM

      Nardeli JV, Fugivara CS, Pinto ERP, Polito WL, Messaddeq Y, Ribeiro SJL, Benedetti AV. Preparation of polyurethane monolithic resins and modification with a condensed tannin-yielding self-healing property [Internet]. Polymers. 2019 ; 11( 11):[citado 2024 out. 16 ] Available from: https://doi.org/10.3390/polym11111890
    • Vancouver

      Nardeli JV, Fugivara CS, Pinto ERP, Polito WL, Messaddeq Y, Ribeiro SJL, Benedetti AV. Preparation of polyurethane monolithic resins and modification with a condensed tannin-yielding self-healing property [Internet]. Polymers. 2019 ; 11( 11):[citado 2024 out. 16 ] Available from: https://doi.org/10.3390/polym11111890
  • Source: Fuel. Unidade: IQSC

    Subjects: QUÍMICA, BIOCOMBUSTÍVEIS, ETANOL, METANOL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOCK, Flávio Vinicius Crizóstomo et al. Time-domain NMR: A novel analytical method to quantify adulteration of ethanol fuel with methanol. Fuel, v. 258, p. 116158 , 2019Tradução . . Disponível em: https://doi.org/10.1016/j.fuel.2019.116158. Acesso em: 16 out. 2024.
    • APA

      Kock, F. V. C., Rocha, T. C., Araújo, G. M., Simões, F. R., Colnago, L. A., & Barbosa, L. L. (2019). Time-domain NMR: A novel analytical method to quantify adulteration of ethanol fuel with methanol. Fuel, 258, 116158 . doi:10.1016/j.fuel.2019.116158
    • NLM

      Kock FVC, Rocha TC, Araújo GM, Simões FR, Colnago LA, Barbosa LL. Time-domain NMR: A novel analytical method to quantify adulteration of ethanol fuel with methanol [Internet]. Fuel. 2019 ; 258 116158 .[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.fuel.2019.116158
    • Vancouver

      Kock FVC, Rocha TC, Araújo GM, Simões FR, Colnago LA, Barbosa LL. Time-domain NMR: A novel analytical method to quantify adulteration of ethanol fuel with methanol [Internet]. Fuel. 2019 ; 258 116158 .[citado 2024 out. 16 ] Available from: https://doi.org/10.1016/j.fuel.2019.116158
  • Source: Sustainable Energy and Fuels. Unidade: EESC

    Subjects: HIDROGÊNIO, BIOCOMBUSTÍVEIS, ENGENHARIA HIDRÁULICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRAGA, Juliana Kawanishi et al. Bacterial and archaeal community structure involved in biofuels production using hydrothermal- and enzymatic-pretreated sugarcane bagasse for an improvement in hydrogen and methane production. Sustainable Energy and Fuels, v. 12, p. 1-17, 2018Tradução . . Disponível em: https://doi.org/10.1039/10.1039/c8se00312b. Acesso em: 16 out. 2024.
    • APA

      Braga, J. K., Motteran, F., Sakamoto, I. K., & Varesche, M. B. A. (2018). Bacterial and archaeal community structure involved in biofuels production using hydrothermal- and enzymatic-pretreated sugarcane bagasse for an improvement in hydrogen and methane production. Sustainable Energy and Fuels, 12, 1-17. doi:10.1039/10.1039/c8se00312b
    • NLM

      Braga JK, Motteran F, Sakamoto IK, Varesche MBA. Bacterial and archaeal community structure involved in biofuels production using hydrothermal- and enzymatic-pretreated sugarcane bagasse for an improvement in hydrogen and methane production [Internet]. Sustainable Energy and Fuels. 2018 ; 12 1-17.[citado 2024 out. 16 ] Available from: https://doi.org/10.1039/10.1039/c8se00312b
    • Vancouver

      Braga JK, Motteran F, Sakamoto IK, Varesche MBA. Bacterial and archaeal community structure involved in biofuels production using hydrothermal- and enzymatic-pretreated sugarcane bagasse for an improvement in hydrogen and methane production [Internet]. Sustainable Energy and Fuels. 2018 ; 12 1-17.[citado 2024 out. 16 ] Available from: https://doi.org/10.1039/10.1039/c8se00312b
  • Source: ChemCatChem. Unidade: IQSC

    Assunto: BIOCOMBUSTÍVEIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARO, Massimiliano Lo et al. Nickel-iron/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid oxide fuel cell anode fed with biofuels. ChemCatChem, v. 8, p. 648-655, 2016Tradução . . Disponível em: https://doi.org/10.1002/cctc.20151090. Acesso em: 16 out. 2024.
    • APA

      Faro, M. L., Trocino, S., Zignani, S. C., Italiano, C., Reis, R. M., Ticianelli, E. A., & Arico, A. S. (2016). Nickel-iron/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid oxide fuel cell anode fed with biofuels. ChemCatChem, 8, 648-655. doi:10.1002/cctc.20151090
    • NLM

      Faro ML, Trocino S, Zignani SC, Italiano C, Reis RM, Ticianelli EA, Arico AS. Nickel-iron/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid oxide fuel cell anode fed with biofuels [Internet]. ChemCatChem. 2016 ; 8 648-655.[citado 2024 out. 16 ] Available from: https://doi.org/10.1002/cctc.20151090
    • Vancouver

      Faro ML, Trocino S, Zignani SC, Italiano C, Reis RM, Ticianelli EA, Arico AS. Nickel-iron/gadolinium-doped ceria (CGO) composite electrocatalyst as a protective layer for a solid oxide fuel cell anode fed with biofuels [Internet]. ChemCatChem. 2016 ; 8 648-655.[citado 2024 out. 16 ] Available from: https://doi.org/10.1002/cctc.20151090

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024