Filtros : "ÁLGEBRAS DE LIE" "Journal of the Australian Mathematical Society" Removido: "ICB-BMI" Limpar

Filtros



Refine with date range


  • Source: Journal of the Australian Mathematical Society. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, OPERADORES LINEARES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e FERREIRA, Ruth N. e GUZZO JÚNIOR, Henrique. Generalized Jordan derivations on semiprime rings. Journal of the Australian Mathematical Society, v. 109, n. 1, p. 36-43, 2020Tradução . . Disponível em: https://doi.org/10.1017/s1446788719000259. Acesso em: 01 nov. 2024.
    • APA

      Ferreira, B. L. M., Ferreira, R. N., & Guzzo Júnior, H. (2020). Generalized Jordan derivations on semiprime rings. Journal of the Australian Mathematical Society, 109( 1), 36-43. doi:10.1017/s1446788719000259
    • NLM

      Ferreira BLM, Ferreira RN, Guzzo Júnior H. Generalized Jordan derivations on semiprime rings [Internet]. Journal of the Australian Mathematical Society. 2020 ; 109( 1): 36-43.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1017/s1446788719000259
    • Vancouver

      Ferreira BLM, Ferreira RN, Guzzo Júnior H. Generalized Jordan derivations on semiprime rings [Internet]. Journal of the Australian Mathematical Society. 2020 ; 109( 1): 36-43.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1017/s1446788719000259
  • Source: Journal of the Australian Mathematical Society. Unidade: IME

    Subjects: GRUPOS QUÂNTICOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e MELVILLE, Duncan J. Equivalence of certain categories of modules for quantized affine Lie algebras. Journal of the Australian Mathematical Society, v. 69, n. 2, p. 162-175, 2000Tradução . . Disponível em: https://doi.org/10.1017/S1446788700002159. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., & Melville, D. J. (2000). Equivalence of certain categories of modules for quantized affine Lie algebras. Journal of the Australian Mathematical Society, 69( 2), 162-175. doi:10.1017/S1446788700002159
    • NLM

      Futorny V, Melville DJ. Equivalence of certain categories of modules for quantized affine Lie algebras [Internet]. Journal of the Australian Mathematical Society. 2000 ; 69( 2): 162-175.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1017/S1446788700002159
    • Vancouver

      Futorny V, Melville DJ. Equivalence of certain categories of modules for quantized affine Lie algebras [Internet]. Journal of the Australian Mathematical Society. 2000 ; 69( 2): 162-175.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1017/S1446788700002159

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024