Filtros : "ÁLGEBRAS DE LIE" "Espanha" Removido: "ICB-BMI" Limpar

Filtros



Refine with date range


  • Source: Journal of Computational Dynamics. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. What is the Magnus expansion?. Journal of Computational Dynamics, v. 12, n. Ja 2025, p. 115-159, 2025Tradução . . Disponível em: https://doi.org/10.3934/jcd.2024028. Acesso em: 01 nov. 2024.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Quesney, A. T. G. (2025). What is the Magnus expansion? Journal of Computational Dynamics, 12( Ja 2025), 115-159. doi:10.3934/jcd.2024028
    • NLM

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/jcd.2024028
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/jcd.2024028
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 01 nov. 2024.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMEZ-AMBROSI, Carlos e LALIENA, Jesús e SHESTAKOV, Ivan P. On the Lie structure of the skew elements of a prime superalgebra with superinvolution. Communications in Algebra, v. 28, n. 7, p. 3277-3291, 2000Tradução . . Disponível em: https://doi.org/10.1080/00927870008827024. Acesso em: 01 nov. 2024.
    • APA

      Gomez-Ambrosi, C., Laliena, J., & Shestakov, I. P. (2000). On the Lie structure of the skew elements of a prime superalgebra with superinvolution. Communications in Algebra, 28( 7), 3277-3291. doi:10.1080/00927870008827024
    • NLM

      Gomez-Ambrosi C, Laliena J, Shestakov IP. On the Lie structure of the skew elements of a prime superalgebra with superinvolution [Internet]. Communications in Algebra. 2000 ; 28( 7): 3277-3291.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927870008827024
    • Vancouver

      Gomez-Ambrosi C, Laliena J, Shestakov IP. On the Lie structure of the skew elements of a prime superalgebra with superinvolution [Internet]. Communications in Algebra. 2000 ; 28( 7): 3277-3291.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927870008827024

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024