Filtros : "ÁLGEBRAS DE LIE" "ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS" Removido: "ICB-BMI" Limpar

Filtros



Refine with date range


  • Source: Journal of Computational Dynamics. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      EBRAHIMI-FARD, Kurusch e MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. What is the Magnus expansion?. Journal of Computational Dynamics, v. 12, n. Ja 2025, p. 115-159, 2025Tradução . . Disponível em: https://doi.org/10.3934/jcd.2024028. Acesso em: 01 nov. 2024.
    • APA

      Ebrahimi-Fard, K., Mencattini, I., & Quesney, A. T. G. (2025). What is the Magnus expansion? Journal of Computational Dynamics, 12( Ja 2025), 115-159. doi:10.3934/jcd.2024028
    • NLM

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/jcd.2024028
    • Vancouver

      Ebrahimi-Fard K, Mencattini I, Quesney ATG. What is the Magnus expansion? [Internet]. Journal of Computational Dynamics. 2025 ; 12( Ja 2025): 115-159.[citado 2024 nov. 01 ] Available from: https://doi.org/10.3934/jcd.2024028
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e MORALES, Oscar e KŘIŽKA, Libor. Admissible representations of simple affine vertex algebras. Journal of Algebra, v. 628, p. 22-70, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2023.03.010. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., Morales, O., & Křižka, L. (2023). Admissible representations of simple affine vertex algebras. Journal of Algebra, 628, 22-70. doi:10.1016/j.jalgebra.2023.03.010
    • NLM

      Futorny V, Morales O, Křižka L. Admissible representations of simple affine vertex algebras [Internet]. Journal of Algebra. 2023 ; 628 22-70.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.03.010
    • Vancouver

      Futorny V, Morales O, Křižka L. Admissible representations of simple affine vertex algebras [Internet]. Journal of Algebra. 2023 ; 628 22-70.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.03.010
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUERRINI, Marcela et al. Generalized imaginary Verma and Wakimoto modules. Journal of Pure and Applied Algebra, v. 227, n. artigo 107332, p. 1-18, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2023.107332. Acesso em: 01 nov. 2024.
    • APA

      Guerrini, M., Kashuba, I., Morales, O., Oliveira, A. S. de, & Santos, F. J. S. dos. (2023). Generalized imaginary Verma and Wakimoto modules. Journal of Pure and Applied Algebra, 227( artigo 107332), 1-18. doi:10.1016/j.jpaa.2023.107332
    • NLM

      Guerrini M, Kashuba I, Morales O, Oliveira AS de, Santos FJS dos. Generalized imaginary Verma and Wakimoto modules [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( artigo 107332): 1-18.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jpaa.2023.107332
    • Vancouver

      Guerrini M, Kashuba I, Morales O, Oliveira AS de, Santos FJS dos. Generalized imaginary Verma and Wakimoto modules [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( artigo 107332): 1-18.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jpaa.2023.107332
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARDOSO, Maria Clara e FUTORNY, Vyacheslav. Affine Lie algebra representations induced from Whittaker modules. Proceedings of the American Mathematical Society, v. 151, p. 1041-1053, 2023Tradução . . Disponível em: https://doi.org/10.1090/proc/16209. Acesso em: 01 nov. 2024.
    • APA

      Cardoso, M. C., & Futorny, V. (2023). Affine Lie algebra representations induced from Whittaker modules. Proceedings of the American Mathematical Society, 151, 1041-1053. doi:10.1090/proc/16209
    • NLM

      Cardoso MC, Futorny V. Affine Lie algebra representations induced from Whittaker modules [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151 1041-1053.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/proc/16209
    • Vancouver

      Cardoso MC, Futorny V. Affine Lie algebra representations induced from Whittaker modules [Internet]. Proceedings of the American Mathematical Society. 2023 ; 151 1041-1053.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/proc/16209
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, v. 593, p. 295-318, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.11.021. Acesso em: 01 nov. 2024.
    • APA

      Grichkov, A., Guzzo Júnior, H., Rasskazova, M., & Zusmanovich, P. (2022). On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, 593, 295-318. doi:10.1016/j.jalgebra.2021.11.021
    • NLM

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
    • Vancouver

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEN, Yuqun e SHESTAKOV, Ivan P e ZHANG, Zerui. Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, v. 590, p. 234-253, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.10.015. Acesso em: 01 nov. 2024.
    • APA

      Chen, Y., Shestakov, I. P., & Zhang, Z. (2022). Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, 590, 234-253. doi:10.1016/j.jalgebra.2021.10.015
    • NLM

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
    • Vancouver

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 01 nov. 2024.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Source: Mathematical Research Letters. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SERGANOVA, Vera e ZHANG, Jian. Gelfand-Tsetlin modules for gl(m|n). Mathematical Research Letters, v. 28, n. 5, p. 1379-1418, 2021Tradução . . Disponível em: https://doi.org/10.4310/MRL.2021.v28.n5.a5. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., Serganova, V., & Zhang, J. (2021). Gelfand-Tsetlin modules for gl(m|n). Mathematical Research Letters, 28( 5), 1379-1418. doi:10.4310/MRL.2021.v28.n5.a5
    • NLM

      Futorny V, Serganova V, Zhang J. Gelfand-Tsetlin modules for gl(m|n) [Internet]. Mathematical Research Letters. 2021 ; 28( 5): 1379-1418.[citado 2024 nov. 01 ] Available from: https://doi.org/10.4310/MRL.2021.v28.n5.a5
    • Vancouver

      Futorny V, Serganova V, Zhang J. Gelfand-Tsetlin modules for gl(m|n) [Internet]. Mathematical Research Letters. 2021 ; 28( 5): 1379-1418.[citado 2024 nov. 01 ] Available from: https://doi.org/10.4310/MRL.2021.v28.n5.a5
  • Source: Advances in Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, COHOMOLOGIA, ÁLGEBRAS DE JORDAN, CATEGORIAS ABELIANAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KASHUBA, Iryna e MATHIEU, Olivier. On the free Jordan algebras. Advances in Mathematics, v. 383, p. 1-35, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.aim.2021.107690. Acesso em: 01 nov. 2024.
    • APA

      Kashuba, I., & Mathieu, O. (2021). On the free Jordan algebras. Advances in Mathematics, 383, 1-35. doi:10.1016/j.aim.2021.107690
    • NLM

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.aim.2021.107690
    • Vancouver

      Kashuba I, Mathieu O. On the free Jordan algebras [Internet]. Advances in Mathematics. 2021 ; 383 1-35.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.aim.2021.107690
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume e SILVA, Pryscilla. Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, v. 556, p. 547-580, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.03.018. Acesso em: 01 nov. 2024.
    • APA

      Mencattini, I., Quesney, A. T. G., & Silva, P. (2020). Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, 556, 547-580. doi:10.1016/j.jalgebra.2020.03.018
    • NLM

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
    • Vancouver

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras. Journal of Pure and Applied Algebra, v. 223, n. 11, p. 4901-4924, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2019.02.021. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., & Křižka, L. (2019). Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras. Journal of Pure and Applied Algebra, 223( 11), 4901-4924. doi:10.1016/j.jpaa.2019.02.021
    • NLM

      Futorny V, Křižka L. Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 11): 4901-4924.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jpaa.2019.02.021
    • Vancouver

      Futorny V, Křižka L. Geometric construction of Gelfand-Tsetlin modules over simple Lie algebras [Internet]. Journal of Pure and Applied Algebra. 2019 ; 223( 11): 4901-4924.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jpaa.2019.02.021
  • Source: Journal of Algebra. Unidade: IME

    Subjects: GRUPOS QUÂNTICOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e RAMÍREZ, Luis Enrique e ZHANG, Jian. Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations. Journal of Algebra, v. 499, p. 375-396, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.12.006. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., Ramírez, L. E., & Zhang, J. (2018). Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations. Journal of Algebra, 499, 375-396. doi:10.1016/j.jalgebra.2017.12.006
    • NLM

      Futorny V, Ramírez LE, Zhang J. Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations [Internet]. Journal of Algebra. 2018 ; 499 375-396.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.12.006
    • Vancouver

      Futorny V, Ramírez LE, Zhang J. Gelfand–Tsetlin modules of quantum gln defined by admissible sets of relations [Internet]. Journal of Algebra. 2018 ; 499 375-396.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.12.006
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEN COX, e FUTORNY, Vyacheslav e MISRA, Kailash C. Imaginary Verma modules for U-q<((sl(2)))over cap> and crystal-like bases. Journal of Algebra, v. 481, p. 12-35, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2017.02.017. Acesso em: 01 nov. 2024.
    • APA

      Ben Cox,, Futorny, V., & Misra, K. C. (2017). Imaginary Verma modules for U-q<((sl(2)))over cap> and crystal-like bases. Journal of Algebra, 481, 12-35. doi:10.1016/j.jalgebra.2017.02.017
    • NLM

      Ben Cox, Futorny V, Misra KC. Imaginary Verma modules for U-q<((sl(2)))over cap> and crystal-like bases [Internet]. Journal of Algebra. 2017 ; 481 12-35.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.02.017
    • Vancouver

      Ben Cox, Futorny V, Misra KC. Imaginary Verma modules for U-q<((sl(2)))over cap> and crystal-like bases [Internet]. Journal of Algebra. 2017 ; 481 12-35.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2017.02.017
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, COHOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e ZUSMANOVICH, Pasha. Deformations of current Lie algebras. I. Small algebras in characteristic 2. Journal of Algebra, v. 473, p. 513-544, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2016.11.024. Acesso em: 01 nov. 2024.
    • APA

      Grichkov, A., & Zusmanovich, P. (2017). Deformations of current Lie algebras. I. Small algebras in characteristic 2. Journal of Algebra, 473, 513-544. doi:10.1016/j.jalgebra.2016.11.024
    • NLM

      Grichkov A, Zusmanovich P. Deformations of current Lie algebras. I. Small algebras in characteristic 2 [Internet]. Journal of Algebra. 2017 ; 473 513-544.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.11.024
    • Vancouver

      Grichkov A, Zusmanovich P. Deformations of current Lie algebras. I. Small algebras in characteristic 2 [Internet]. Journal of Algebra. 2017 ; 473 513-544.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2016.11.024
  • Source: Commentationes Mathematicae Universitatis Carolinae. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ÁLGEBRAS LIVRES, ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, GRUPOS SIMÉTRICOS, ÁLGEBRA COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BREMNER, Murray R e MADARIAGA, Sara e PERESI, Luiz Antonio. Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions. Commentationes Mathematicae Universitatis Carolinae, v. 57, n. 4 , p. 413-452, 2016Tradução . . Disponível em: https://doi.org/10.14712/1213-7243.2015.188. Acesso em: 01 nov. 2024.
    • APA

      Bremner, M. R., Madariaga, S., & Peresi, L. A. (2016). Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions. Commentationes Mathematicae Universitatis Carolinae, 57( 4 ), 413-452. doi:10.14712/1213-7243.2015.188
    • NLM

      Bremner MR, Madariaga S, Peresi LA. Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions [Internet]. Commentationes Mathematicae Universitatis Carolinae. 2016 ; 57( 4 ): 413-452.[citado 2024 nov. 01 ] Available from: https://doi.org/10.14712/1213-7243.2015.188
    • Vancouver

      Bremner MR, Madariaga S, Peresi LA. Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions [Internet]. Commentationes Mathematicae Universitatis Carolinae. 2016 ; 57( 4 ): 413-452.[citado 2024 nov. 01 ] Available from: https://doi.org/10.14712/1213-7243.2015.188
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COX, Ben e FUTORNY, Vyacheslav e MISRA, Kailash C. An imaginary PBW basis for quantum affine algebras of type 1. Journal of Pure and Applied Algebra, v. 219, n. 1, p. 83-100, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2014.04.011. Acesso em: 01 nov. 2024.
    • APA

      Cox, B., Futorny, V., & Misra, K. C. (2015). An imaginary PBW basis for quantum affine algebras of type 1. Journal of Pure and Applied Algebra, 219( 1), 83-100. doi:10.1016/j.jpaa.2014.04.011
    • NLM

      Cox B, Futorny V, Misra KC. An imaginary PBW basis for quantum affine algebras of type 1 [Internet]. Journal of Pure and Applied Algebra. 2015 ; 219( 1): 83-100.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jpaa.2014.04.011
    • Vancouver

      Cox B, Futorny V, Misra KC. An imaginary PBW basis for quantum affine algebras of type 1 [Internet]. Journal of Pure and Applied Algebra. 2015 ; 219( 1): 83-100.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jpaa.2014.04.011
  • Source: Journal of Algebra. Unidade: IME

    Subjects: GRUPOS QUÂNTICOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COX, Ben e FUTORNY, Vyacheslav e MISRA, Kailash C. Imaginary Verma modules and Kashiwara algebras for U-q((g)over-cap). Journal of Algebra, v. 424, p. 390–415, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2014.09.025. Acesso em: 01 nov. 2024.
    • APA

      Cox, B., Futorny, V., & Misra, K. C. (2015). Imaginary Verma modules and Kashiwara algebras for U-q((g)over-cap). Journal of Algebra, 424, 390–415. doi:10.1016/j.jalgebra.2014.09.025
    • NLM

      Cox B, Futorny V, Misra KC. Imaginary Verma modules and Kashiwara algebras for U-q((g)over-cap) [Internet]. Journal of Algebra. 2015 ; 424 390–415.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2014.09.025
    • Vancouver

      Cox B, Futorny V, Misra KC. Imaginary Verma modules and Kashiwara algebras for U-q((g)over-cap) [Internet]. Journal of Algebra. 2015 ; 424 390–415.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1016/j.jalgebra.2014.09.025
  • Source: Letters in Mathematical Physics. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, GRUPOS QUÂNTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e MARTINS, Renato A. Localization of free field realizations of affine Lie algebras. Letters in Mathematical Physics, v. 105, n. 4, p. 483-502, 2015Tradução . . Disponível em: https://doi.org/10.1007/s11005-015-0752-3. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., Grantcharov, D., & Martins, R. A. (2015). Localization of free field realizations of affine Lie algebras. Letters in Mathematical Physics, 105( 4), 483-502. doi:10.1007/s11005-015-0752-3
    • NLM

      Futorny V, Grantcharov D, Martins RA. Localization of free field realizations of affine Lie algebras [Internet]. Letters in Mathematical Physics. 2015 ; 105( 4): 483-502.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s11005-015-0752-3
    • Vancouver

      Futorny V, Grantcharov D, Martins RA. Localization of free field realizations of affine Lie algebras [Internet]. Letters in Mathematical Physics. 2015 ; 105( 4): 483-502.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s11005-015-0752-3
  • Source: Proceedings of the American Mathematical Society. Unidade: IME

    Subjects: GRUPOS QUÂNTICOS, ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HARTWIG, Jonas T e WILSON, Evan A. Quantum affine modules for non-twisted affine Kac-Moody algebras. Proceedings of the American Mathematical Society, v. 143, n. 12, p. 5159-5171, 2015Tradução . . Disponível em: https://doi.org/10.1090/proc/12663. Acesso em: 01 nov. 2024.
    • APA

      Futorny, V., Hartwig, J. T., & Wilson, E. A. (2015). Quantum affine modules for non-twisted affine Kac-Moody algebras. Proceedings of the American Mathematical Society, 143( 12), 5159-5171. doi:10.1090/proc/12663
    • NLM

      Futorny V, Hartwig JT, Wilson EA. Quantum affine modules for non-twisted affine Kac-Moody algebras [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143( 12): 5159-5171.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/proc/12663
    • Vancouver

      Futorny V, Hartwig JT, Wilson EA. Quantum affine modules for non-twisted affine Kac-Moody algebras [Internet]. Proceedings of the American Mathematical Society. 2015 ; 143( 12): 5159-5171.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1090/proc/12663
  • Source: Algebras and Representation Theory. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOVDI, Victor e GRICHKOV, Alexandre e SICILIANO, Salvatore. On filtered multiplicative bases of some associative algebras. Algebras and Representation Theory, v. 18, n. 2, p. 297-306, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10468-014-9494-7. Acesso em: 01 nov. 2024.
    • APA

      Bovdi, V., Grichkov, A., & Siciliano, S. (2015). On filtered multiplicative bases of some associative algebras. Algebras and Representation Theory, 18( 2), 297-306. doi:10.1007/s10468-014-9494-7
    • NLM

      Bovdi V, Grichkov A, Siciliano S. On filtered multiplicative bases of some associative algebras [Internet]. Algebras and Representation Theory. 2015 ; 18( 2): 297-306.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10468-014-9494-7
    • Vancouver

      Bovdi V, Grichkov A, Siciliano S. On filtered multiplicative bases of some associative algebras [Internet]. Algebras and Representation Theory. 2015 ; 18( 2): 297-306.[citado 2024 nov. 01 ] Available from: https://doi.org/10.1007/s10468-014-9494-7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024