Filtros : "IQ005" "Redox Biology" Removido: "lau" Limpar

Filtros



Refine with date range


  • Source: Redox Biology. Unidade: IQ

    Subjects: FIBROSE PULMONAR, NEFRITE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Litiele Cezar da et al. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biology, v. 71, p. 1-13 art. 103102, 2024Tradução . . Disponível em: https://dx.doi.org/10.1016/j.redox.2024.103102. Acesso em: 29 set. 2024.
    • APA

      Cruz, L. C. da, Habibovic, A., Dempsey, B., Massafera, M. P., Heininger, Y. M. W. J., Lin, M. chong J., et al. (2024). Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues. Redox Biology, 71, 1-13 art. 103102. doi:10.1016/j.redox.2024.103102
    • NLM

      Cruz LC da, Habibovic A, Dempsey B, Massafera MP, Heininger YMWJ, Lin M chong J, Hoffman ET, Weiss DJ, Huang SK, Vliet A van der, Meotti FC. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues [Internet]. Redox Biology. 2024 ; 71 1-13 art. 103102.[citado 2024 set. 29 ] Available from: https://dx.doi.org/10.1016/j.redox.2024.103102
    • Vancouver

      Cruz LC da, Habibovic A, Dempsey B, Massafera MP, Heininger YMWJ, Lin M chong J, Hoffman ET, Weiss DJ, Huang SK, Vliet A van der, Meotti FC. Identification of tyrosine brominated extracellular matrix proteins in normal and fibrotic lung tissues [Internet]. Redox Biology. 2024 ; 71 1-13 art. 103102.[citado 2024 set. 29 ] Available from: https://dx.doi.org/10.1016/j.redox.2024.103102
  • Source: Redox Biology. Unidade: IQ

    Subjects: NEUTRÓFILOS, VÍRUS, FUNGOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Lorenna Rocha et al. Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis. Redox Biology, v. 64, p. 1-14 art. 102784, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2023.102784. Acesso em: 29 set. 2024.
    • APA

      Reis, L. R., Souza Junior, D. R. de, Tomasin, R., Bruni-Cardoso, A., Di Mascio, P., & Ronsein, G. E. (2023). Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis. Redox Biology, 64, 1-14 art. 102784. doi:10.1016/j.redox.2023.102784
    • NLM

      Reis LR, Souza Junior DR de, Tomasin R, Bruni-Cardoso A, Di Mascio P, Ronsein GE. Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis [Internet]. Redox Biology. 2023 ; 64 1-14 art. 102784.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2023.102784
    • Vancouver

      Reis LR, Souza Junior DR de, Tomasin R, Bruni-Cardoso A, Di Mascio P, Ronsein GE. Citrullination of actin-ligand and nuclear structural proteins, cytoskeleton reorganization and protein redistribution across cellular fractions are early events in ionomycin-induced NETosis [Internet]. Redox Biology. 2023 ; 64 1-14 art. 102784.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2023.102784
  • Source: Redox Biology. Unidades: IB, IQ

    Subjects: PSEUDOMONAS, VIRULÊNCIA, INFLAMAÇÃO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Leonardo Silva et al. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence. Redox Biology, v. 46, p. 1-13 art. 102075, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2021.102075. Acesso em: 29 set. 2024.
    • APA

      Rocha, L. S., Silva, B. P., Correia, T. M. L., Silva, R. P. da, Meireles, D. de A., Pereira, R., et al. (2021). Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence. Redox Biology, 46, 1-13 art. 102075. doi:10.1016/j.redox.2021.102075
    • NLM

      Rocha LS, Silva BP, Correia TML, Silva RP da, Meireles D de A, Pereira R, Netto LES, Meotti FC, Queiroz RF. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence [Internet]. Redox Biology. 2021 ; 46 1-13 art. 102075.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2021.102075
    • Vancouver

      Rocha LS, Silva BP, Correia TML, Silva RP da, Meireles D de A, Pereira R, Netto LES, Meotti FC, Queiroz RF. Peroxiredoxin AhpC1 protects Pseudomonas aeruginosa against the inflammatory oxidative burst and confers virulence [Internet]. Redox Biology. 2021 ; 46 1-13 art. 102075.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2021.102075
  • Source: Redox Biology. Unidade: IQ

    Subjects: MITOCÔNDRIAS, ESTRESSE OXIDATIVO, ESPÉCIES REATIVAS DE OXIGÊNIO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAKIMOTO, Pâmela Aiako Hypólito Brito et al. Increased glycolysis is an early consequence of palmitate lipotoxicity mediated by redox signaling. Redox Biology, v. 45, p. 1-12 art. 102026, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2021.102026. Acesso em: 29 set. 2024.
    • APA

      Kakimoto, P. A. H. B., Serna, J. D. C., Ramos, V. de M., Zorzano, A., & Kowaltowski, A. J. (2021). Increased glycolysis is an early consequence of palmitate lipotoxicity mediated by redox signaling. Redox Biology, 45, 1-12 art. 102026. doi:10.1016/j.redox.2021.102026
    • NLM

      Kakimoto PAHB, Serna JDC, Ramos V de M, Zorzano A, Kowaltowski AJ. Increased glycolysis is an early consequence of palmitate lipotoxicity mediated by redox signaling [Internet]. Redox Biology. 2021 ; 45 1-12 art. 102026.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2021.102026
    • Vancouver

      Kakimoto PAHB, Serna JDC, Ramos V de M, Zorzano A, Kowaltowski AJ. Increased glycolysis is an early consequence of palmitate lipotoxicity mediated by redox signaling [Internet]. Redox Biology. 2021 ; 45 1-12 art. 102026.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2021.102026
  • Source: Redox Biology. Unidade: IQ

    Subjects: MITOCÔNDRIAS, CÁLCIO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CERQUEIRA, Fernanda Menezes et al. A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biology, v. 37, p. 1-10 art. 101676, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2020.101676. Acesso em: 29 set. 2024.
    • APA

      Cerqueira, F. M., Stockum, S. von, Giacomello, M., Goliand, I., Kakimoto, P. A. H. B., Marchesan, E., et al. (2020). A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biology, 37, 1-10 art. 101676. doi:10.1016/j.redox.2020.101676
    • NLM

      Cerqueira FM, Stockum S von, Giacomello M, Goliand I, Kakimoto PAHB, Marchesan E, De Stefani D, Kowaltowski AJ, Ziviani E, Shirihai OS. A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake [Internet]. Redox Biology. 2020 ; 37 1-10 art. 101676.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2020.101676
    • Vancouver

      Cerqueira FM, Stockum S von, Giacomello M, Goliand I, Kakimoto PAHB, Marchesan E, De Stefani D, Kowaltowski AJ, Ziviani E, Shirihai OS. A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake [Internet]. Redox Biology. 2020 ; 37 1-10 art. 101676.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2020.101676
  • Source: Redox Biology. Unidade: IQ

    Subjects: MITOCÔNDRIAS, OXIGÊNIO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOWALTOWSKI, Alicia Juliana. Strategies to detect mitochondrial oxidants. Redox Biology, v. 21, p. 1-6 art. 101065, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2018.101065. Acesso em: 29 set. 2024.
    • APA

      Kowaltowski, A. J. (2019). Strategies to detect mitochondrial oxidants. Redox Biology, 21, 1-6 art. 101065. doi:10.1016/j.redox.2018.101065
    • NLM

      Kowaltowski AJ. Strategies to detect mitochondrial oxidants [Internet]. Redox Biology. 2019 ; 21 1-6 art. 101065.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.101065
    • Vancouver

      Kowaltowski AJ. Strategies to detect mitochondrial oxidants [Internet]. Redox Biology. 2019 ; 21 1-6 art. 101065.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.101065
  • Source: Redox Biology. Unidade: IQ

    Subjects: ÁCIDO ÚRICO, PSEUDOMONAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Larissa Anastácio da Costa et al. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells. Redox Biology, v. 16, p. 179-188, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2018.02.020. Acesso em: 29 set. 2024.
    • APA

      Carvalho, L. A. da C., Lopes, J. P. P. B., Kaihami, G. H., Silva, R. P. da, Bruni-Cardoso, A., Baldini, R. L., & Meotti, F. C. (2018). Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells. Redox Biology, 16, 179-188. doi:10.1016/j.redox.2018.02.020
    • NLM

      Carvalho LA da C, Lopes JPPB, Kaihami GH, Silva RP da, Bruni-Cardoso A, Baldini RL, Meotti FC. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells [Internet]. Redox Biology. 2018 ; 16 179-188.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.02.020
    • Vancouver

      Carvalho LA da C, Lopes JPPB, Kaihami GH, Silva RP da, Bruni-Cardoso A, Baldini RL, Meotti FC. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells [Internet]. Redox Biology. 2018 ; 16 179-188.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.02.020
  • Source: Redox Biology. Unidades: IQ, FM, EEFE

    Subjects: MÚSCULO ESQUELÉTICO, EXERCÍCIO FÍSICO, AMINOÁCIDOS, ALDEÍDOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Victor Henrique et al. Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle. Redox Biology, v. 18, p. 222-228, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2018.07.009. Acesso em: 29 set. 2024.
    • APA

      Carvalho, V. H., Oliveira, A. H. S., Oliveira, L. F. de, Silva, R. P. da, Di Mascio, P., Gualano, B., et al. (2018). Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle. Redox Biology, 18, 222-228. doi:10.1016/j.redox.2018.07.009
    • NLM

      Carvalho VH, Oliveira AHS, Oliveira LF de, Silva RP da, Di Mascio P, Gualano B, Artioli GG, Medeiros MHG de. Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle [Internet]. Redox Biology. 2018 ; 18 222-228.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.07.009
    • Vancouver

      Carvalho VH, Oliveira AHS, Oliveira LF de, Silva RP da, Di Mascio P, Gualano B, Artioli GG, Medeiros MHG de. Exercise and β-alanine supplementation on carnosine-acrolein adduct in skeletal muscle [Internet]. Redox Biology. 2018 ; 18 222-228.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.07.009
  • Source: Redox Biology. Unidade: IQ

    Subjects: DOENÇAS NEURODEGENERATIVAS, SUPERÓXIDO DISMUTASE, ESCLEROSE AMIOTRÓFICA LATERAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DANTAS, Lucas Souza et al. Cholesterol secosterol aldehyde adduction and aggregation of Cu,Zn-superoxide dismutase: potential implications in ALS. Redox Biology, v. 19, p. 105-115, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2018.08.007. Acesso em: 29 set. 2024.
    • APA

      Dantas, L. S., Chaves Filho, A. de B., Coelho, F. R., Mattos, T. C. G. de, Tallman, K. A., Porter, N. A., et al. (2018). Cholesterol secosterol aldehyde adduction and aggregation of Cu,Zn-superoxide dismutase: potential implications in ALS. Redox Biology, 19, 105-115. doi:10.1016/j.redox.2018.08.007
    • NLM

      Dantas LS, Chaves Filho A de B, Coelho FR, Mattos TCG de, Tallman KA, Porter NA, Augusto O, Miyamoto S. Cholesterol secosterol aldehyde adduction and aggregation of Cu,Zn-superoxide dismutase: potential implications in ALS [Internet]. Redox Biology. 2018 ; 19 105-115.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.08.007
    • Vancouver

      Dantas LS, Chaves Filho A de B, Coelho FR, Mattos TCG de, Tallman KA, Porter NA, Augusto O, Miyamoto S. Cholesterol secosterol aldehyde adduction and aggregation of Cu,Zn-superoxide dismutase: potential implications in ALS [Internet]. Redox Biology. 2018 ; 19 105-115.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2018.08.007
  • Source: Redox Biology. Unidade: IQ

    Subjects: DOENÇAS METABÓLICAS, MITOCÔNDRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAKIMOTO, Pâmela A e KOWALTOWSKI, Alicia Juliana. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biology, v. 8, p. 216-225, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2016.01.009. Acesso em: 29 set. 2024.
    • APA

      Kakimoto, P. A., & Kowaltowski, A. J. (2016). Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance. Redox Biology, 8, 216-225. doi:10.1016/j.redox.2016.01.009
    • NLM

      Kakimoto PA, Kowaltowski AJ. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance [Internet]. Redox Biology. 2016 ; 8 216-225.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2016.01.009
    • Vancouver

      Kakimoto PA, Kowaltowski AJ. Effects of high fat diets on rodent liver bioenergetics and oxidative imbalance [Internet]. Redox Biology. 2016 ; 8 216-225.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2016.01.009
  • Source: Redox Biology. Unidade: IQ

    Subjects: MITOCÔNDRIAS, ÁCIDOS GRAXOS, OXIDAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAKIMOTO, Pâmela Aiako Hypólito Brito et al. 'H IND. 2''O IND. 2' release from the very long chain acyl-CoA dehydrogenase. Redox Biology, v. 4, p. 375-380, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2015.02.003. Acesso em: 29 set. 2024.
    • APA

      Kakimoto, P. A. H. B., Tamaki, F. K., Cardoso, A. R., Marana, S. R., & Kowaltowski, A. J. (2015). 'H IND. 2''O IND. 2' release from the very long chain acyl-CoA dehydrogenase. Redox Biology, 4, 375-380. doi:10.1016/j.redox.2015.02.003
    • NLM

      Kakimoto PAHB, Tamaki FK, Cardoso AR, Marana SR, Kowaltowski AJ. 'H IND. 2''O IND. 2' release from the very long chain acyl-CoA dehydrogenase [Internet]. Redox Biology. 2015 ; 4 375-380.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2015.02.003
    • Vancouver

      Kakimoto PAHB, Tamaki FK, Cardoso AR, Marana SR, Kowaltowski AJ. 'H IND. 2''O IND. 2' release from the very long chain acyl-CoA dehydrogenase [Internet]. Redox Biology. 2015 ; 4 375-380.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2015.02.003
  • Source: Redox Biology. Unidade: IQ

    Subjects: MITOCÔNDRIAS, DOENÇAS NEUROMUSCULARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMIGO, Ignacio e KOWALTOWSKI, Alicia Juliana. Dietary restriction in cerebral bioenergetics and redox state. Redox Biology, v. 2, p. 296-304, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.redox.2013.12.021. Acesso em: 29 set. 2024.
    • APA

      Amigo, I., & Kowaltowski, A. J. (2014). Dietary restriction in cerebral bioenergetics and redox state. Redox Biology, 2, 296-304. doi:10.1016/j.redox.2013.12.021
    • NLM

      Amigo I, Kowaltowski AJ. Dietary restriction in cerebral bioenergetics and redox state [Internet]. Redox Biology. 2014 ; 2 296-304.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2013.12.021
    • Vancouver

      Amigo I, Kowaltowski AJ. Dietary restriction in cerebral bioenergetics and redox state [Internet]. Redox Biology. 2014 ; 2 296-304.[citado 2024 set. 29 ] Available from: https://doi.org/10.1016/j.redox.2013.12.021

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024