Filtros : "IME" "Linear Algebra and its Applications" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA EXTERIOR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIDELES, Claudemir et al. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings. Linear Algebra and its Applications, v. 680, p. 93-107, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.10.002. Acesso em: 07 set. 2024.
    • APA

      Fideles, C., Gomes, A. B., Grichkov, A., & Guimarães, A. (2024). A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings. Linear Algebra and its Applications, 680, 93-107. doi:10.1016/j.laa.2023.10.002
    • NLM

      Fideles C, Gomes AB, Grichkov A, Guimarães A. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings [Internet]. Linear Algebra and its Applications. 2024 ; 680 93-107.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.10.002
    • Vancouver

      Fideles C, Gomes AB, Grichkov A, Guimarães A. A characterization of the natural grading of the Grassmann algebra and its non-homogeneous Z2-gradings [Internet]. Linear Algebra and its Applications. 2024 ; 680 93-107.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.10.002
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas F. e BELLO-CRUZ, Yunier e HAESER, Gabriel. On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, v. 665, p. 291-314, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.02.001. Acesso em: 07 set. 2024.
    • APA

      Armijo, N. F., Bello-Cruz, Y., & Haeser, G. (2023). On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, 665, 291-314. doi:10.1016/j.laa.2023.02.001
    • NLM

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
    • Vancouver

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: SUPERÁLGEBRAS DE LIE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      YASUMURA, Felipe. Universal enveloping of a graded Lie algebra. Linear Algebra and its Applications, v. 674, p. 208-229, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.05.028. Acesso em: 07 set. 2024.
    • APA

      Yasumura, F. (2023). Universal enveloping of a graded Lie algebra. Linear Algebra and its Applications, 674, 208-229. doi:10.1016/j.laa.2023.05.028
    • NLM

      Yasumura F. Universal enveloping of a graded Lie algebra [Internet]. Linear Algebra and its Applications. 2023 ; 674 208-229.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.05.028
    • Vancouver

      Yasumura F. Universal enveloping of a graded Lie algebra [Internet]. Linear Algebra and its Applications. 2023 ; 674 208-229.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2023.05.028
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, FORMAS QUADRÁTICAS, FORMAS BILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES, Victor Senoguchi et al. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, v. 611, p. 118-134, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.12.005. Acesso em: 07 set. 2024.
    • APA

      Borges, V. S., Kashuba, I., Sergeichuk, V. V., Sodré, E. V., & Zaidan, A. (2021). Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product. Linear Algebra and its Applications, 611, 118-134. doi:10.1016/j.laa.2020.12.005
    • NLM

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
    • Vancouver

      Borges VS, Kashuba I, Sergeichuk VV, Sodré EV, Zaidan A. Classification of linear operators satisfying (Au,v)=(u,Av) or (Au,Av)=(u,v) on a vector space with indefinite scalar product [Internet]. Linear Algebra and its Applications. 2021 ; 611 118-134.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.12.005
  • Source: Linear Algebra and its Applications. Conference titles: Linear Algebra without Borders - ILAS Conference. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. Disponível em: https://doi.org/10.1016/j.laa.2020.12.009. Acesso em: 07 set. 2024. , 2021
    • APA

      Futorny, V., Klymchuk, T., Klymenko, O., Sergeichuk, V. V., & Shvai, N. (2021). Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. doi:10.1016/j.laa.2020.12.009
    • NLM

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
    • Vancouver

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G. e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, v. 621, p. 235-253, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2021.03.023. Acesso em: 07 set. 2024.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, 621, 235-253. doi:10.1016/j.laa.2021.03.023
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2021.03.023
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2021.03.023
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 07 set. 2024.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKII, Genrich R. et al. Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, v. 609, p. 317-331, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.09.018. Acesso em: 07 set. 2024.
    • APA

      Belitskii, G. R., Futorny, V., Muzychuk, M., & Sergeichuk, V. V. (2021). Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, 609, 317-331. doi:10.1016/j.laa.2020.09.018
    • NLM

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
    • Vancouver

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ESPAÇOS COM PRODUTO INTERNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAALIM, Jonathan V. et al. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, v. 587, p. 92-110, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2019.11.004. Acesso em: 07 set. 2024.
    • APA

      Caalim, J. V., Futorny, V., Sergeichuk, V. V., & Tanaka, Y. -ichi. (2020). Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, 587, 92-110. doi:10.1016/j.laa.2019.11.004
    • NLM

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
    • Vancouver

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HARTWIG, Jonas T. De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN. Linear Algebra and its Applications, v. 568, p. 173-188, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.08.011. Acesso em: 07 set. 2024.
    • APA

      Futorny, V., & Hartwig, J. T. (2019). De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN. Linear Algebra and its Applications, 568, 173-188. doi:10.1016/j.laa.2018.08.011
    • NLM

      Futorny V, Hartwig JT. De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN [Internet]. Linear Algebra and its Applications. 2019 ; 568 173-188.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.08.011
    • Vancouver

      Futorny V, Hartwig JT. De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN [Internet]. Linear Algebra and its Applications. 2019 ; 568 173-188.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.08.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: FORMAS QUADRÁTICAS, TEORIA DOS ANÉIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Claudia Cavalcante e IUSENKO, Kostiantyn. On dimension of poset variety. Linear Algebra and its Applications, v. 568, n. 1, p. 155-164, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.06.019. Acesso em: 07 set. 2024.
    • APA

      Fonseca, C. C., & Iusenko, K. (2019). On dimension of poset variety. Linear Algebra and its Applications, 568( 1), 155-164. doi:10.1016/j.laa.2018.06.019
    • NLM

      Fonseca CC, Iusenko K. On dimension of poset variety [Internet]. Linear Algebra and its Applications. 2019 ; 568( 1): 155-164.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.06.019
    • Vancouver

      Fonseca CC, Iusenko K. On dimension of poset variety [Internet]. Linear Algebra and its Applications. 2019 ; 568( 1): 155-164.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.06.019
  • Source: Linear Algebra and its Applications. Unidade: IME

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEBIANO, Natalia e BREŠAR, Matej e FUTORNY, Vyacheslav. Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial]. Linear Algebra and its Applications. Philadelphia: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.laa.2019.02.007. Acesso em: 07 set. 2024. , 2019
    • APA

      Bebiano, N., Brešar, M., & Futorny, V. (2019). Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial]. Linear Algebra and its Applications. Philadelphia: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.laa.2019.02.007
    • NLM

      Bebiano N, Brešar M, Futorny V. Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial] [Internet]. Linear Algebra and its Applications. 2019 ; 568 1-9.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2019.02.007
    • Vancouver

      Bebiano N, Brešar M, Futorny V. Preface to the special issue dedicated to Vladimir Sergeichuk on the occasion of his 70th birthday. [Editorial] [Internet]. Linear Algebra and its Applications. 2019 ; 568 1-9.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2019.02.007
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TENSORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GROCHOW, Joshua A. e SERGEICHUK, Vladimir V. Wildness for tensors. Linear Algebra and its Applications, v. 566, p. 212-244, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.12.022. Acesso em: 07 set. 2024.
    • APA

      Futorny, V., Grochow, J. A., & Sergeichuk, V. V. (2019). Wildness for tensors. Linear Algebra and its Applications, 566, 212-244. doi:10.1016/j.laa.2018.12.022
    • NLM

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
    • Vancouver

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e PEREZ-IZQUIERDO, José Maria. Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, v. 544, p. 460-501, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.01.028. Acesso em: 07 set. 2024.
    • APA

      Grichkov, A., & Perez-Izquierdo, J. M. (2018). Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, 544, 460-501. doi:10.1016/j.laa.2018.01.028
    • NLM

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028
    • Vancouver

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, v. 536, p. 201-209, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.09.019. Acesso em: 07 set. 2024.
    • APA

      Futorny, V., Klymchuk, T., Petravchuk, A. P., & Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, 536, 201-209. doi:10.1016/j.laa.2017.09.019
    • NLM

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
    • Vancouver

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Carlos M. et al. Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, v. 515, n. , p. 1-5, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.11.012. Acesso em: 07 set. 2024.
    • APA

      Fonseca, C. M., Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2017). Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, 515( ), 1-5. doi:10.1016/j.laa.2016.11.012
    • NLM

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
    • Vancouver

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TRANSFORMAÇÕES LINEARES, TRANSFORMAÇÕES SEMILINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VANEGAS, Elkin Oveimar Quintero e FERNÁNDEZ, Juan Carlos Gutiérrez. Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, v. 518, p. 57-78, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.12.026. Acesso em: 07 set. 2024.
    • APA

      Vanegas, E. O. Q., & Fernández, J. C. G. (2017). Nilpotent linear spaces and Albert's Problem. Linear Algebra and its Applications, 518, 57-78. doi:10.1016/j.laa.2016.12.026
    • NLM

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
    • Vancouver

      Vanegas EOQ, Fernández JCG. Nilpotent linear spaces and Albert's Problem [Internet]. Linear Algebra and its Applications. 2017 ; 518 57-78.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2016.12.026
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, TEORIA DA REPRESENTAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HORN, Roger A e SERGEICHUK, Vladimir V. Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, v. 519, p. 278-295, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.01.006. Acesso em: 07 set. 2024.
    • APA

      Futorny, V., Horn, R. A., & Sergeichuk, V. V. (2017). Specht’s criterion for systems of linear mappings. Linear Algebra and its Applications, 519, 278-295. doi:10.1016/j.laa.2017.01.006
    • NLM

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
    • Vancouver

      Futorny V, Horn RA, Sergeichuk VV. Specht’s criterion for systems of linear mappings [Internet]. Linear Algebra and its Applications. 2017 ; 519 278-295.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.01.006
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DMYTRYSHYN, Andrii R. et al. Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, v. 527, p. 294-302, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.04.011. Acesso em: 07 set. 2024.
    • APA

      Dmytryshyn, A. R., Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. doi:10.1016/j.laa.2017.04.011
    • NLM

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
    • Vancouver

      Dmytryshyn AR, Futorny V, Klymchuk T, Sergeichuk VV. Generalization of Roth's solvability criteria to systems of matrix equations [Internet]. Linear Algebra and its Applications. 2017 ; 527 294-302.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2017.04.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, MATRIZES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KLYMCHUK, Tatiana e SERGEICHUK, Vladimir V. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, v. 510, p. 246-258, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.08.022. Acesso em: 07 set. 2024.
    • APA

      Futorny, V., Klymchuk, T., & Sergeichuk, V. V. (2016). Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ. Linear Algebra and its Applications, 510, 246-258. doi:10.1016/j.laa.2016.08.022
    • NLM

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022
    • Vancouver

      Futorny V, Klymchuk T, Sergeichuk VV. Roth's solvability criteria for the matrix equations AX−XˆB=C and X−AXˆB=C over the skew field of quaternions with an involutive automorphism q↦qˆ [Internet]. Linear Algebra and its Applications. 2016 ; 510 246-258.[citado 2024 set. 07 ] Available from: https://doi.org/10.1016/j.laa.2016.08.022

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024