Filtros : "IME" "Ergodic Theory and Dynamical Systems" Limpar

Filtros



Refine with date range


  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: VARIEDADES COMPLEXAS, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAKATOS, Ulisses e TAL, Fábio Armando. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive. Ergodic Theory and Dynamical Systems, v. 44, n. 4, p. 1102-1122, 2024Tradução . . Disponível em: https://doi.org/10.1017/etds.2023.32. Acesso em: 18 maio 2024.
    • APA

      Lakatos, U., & Tal, F. A. (2024). Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive. Ergodic Theory and Dynamical Systems, 44( 4), 1102-1122. doi:10.1017/etds.2023.32
    • NLM

      Lakatos U, Tal FA. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive [Internet]. Ergodic Theory and Dynamical Systems. 2024 ; 44( 4): 1102-1122.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2023.32
    • Vancouver

      Lakatos U, Tal FA. Proper extensions of the 2-sphere’s conformal group present entropy and are 4-transitive [Internet]. Ergodic Theory and Dynamical Systems. 2024 ; 44( 4): 1102-1122.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2023.32
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CLARK, Trevor e FARIA, Edson de e STRIEN, Sebastian van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, v. 43, n. 11, p. 3636-3684, 2023Tradução . . Disponível em: https://doi.org/10.1017/etds.2022.72. Acesso em: 18 maio 2024.
    • APA

      Clark, T., Faria, E. de, & Strien, S. van. (2023). Asymptotically holomorphic methods for infinitely renormalizable unimodal maps. Ergodic Theory and Dynamical Systems, 43( 11), 3636-3684. doi:10.1017/etds.2022.72
    • NLM

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2022.72
    • Vancouver

      Clark T, Faria E de, Strien S van. Asymptotically holomorphic methods for infinitely renormalizable unimodal maps [Internet]. Ergodic Theory and Dynamical Systems. 2023 ; 43( 11): 3636-3684.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2022.72
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, M. et al. Return-time Lq-spectrum for equilibrium states with potentials of summable variation. Ergodic Theory and Dynamical Systems, n. , p. 2489-2515-, 2022Tradução . . Disponível em: https://doi.org/10.1017/etds.2022.40. Acesso em: 18 maio 2024.
    • APA

      Abadi, M., Amorim, V., Chazottes, J. -R., & Gallo, S. (2022). Return-time Lq-spectrum for equilibrium states with potentials of summable variation. Ergodic Theory and Dynamical Systems, ( ), 2489-2515-. doi:10.1017/etds.2022.40
    • NLM

      Abadi M, Amorim V, Chazottes J-R, Gallo S. Return-time Lq-spectrum for equilibrium states with potentials of summable variation [Internet]. Ergodic Theory and Dynamical Systems. 2022 ;( ): 2489-2515-.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2022.40
    • Vancouver

      Abadi M, Amorim V, Chazottes J-R, Gallo S. Return-time Lq-spectrum for equilibrium states with potentials of summable variation [Internet]. Ergodic Theory and Dynamical Systems. 2022 ;( ): 2489-2515-.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2022.40
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA, Edson de e GUARINO, Pablo. Quasisymmetric orbit-flexibility of multicritical circle maps. Ergodic Theory and Dynamical Systems, v. 42 , n. 11 , p. 3271-3310, 2022Tradução . . Disponível em: https://doi.org/10.1017/etds.2021.104. Acesso em: 18 maio 2024.
    • APA

      Faria, E. de, & Guarino, P. (2022). Quasisymmetric orbit-flexibility of multicritical circle maps. Ergodic Theory and Dynamical Systems, 42 ( 11 ), 3271-3310. doi:10.1017/etds.2021.104
    • NLM

      Faria E de, Guarino P. Quasisymmetric orbit-flexibility of multicritical circle maps [Internet]. Ergodic Theory and Dynamical Systems. 2022 ; 42 ( 11 ): 3271-3310.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2021.104
    • Vancouver

      Faria E de, Guarino P. Quasisymmetric orbit-flexibility of multicritical circle maps [Internet]. Ergodic Theory and Dynamical Systems. 2022 ; 42 ( 11 ): 3271-3310.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2021.104
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SALOMÃO, Guilherme Silva e TAL, Fábio Armando. Non-existence of sublinear diffusion for a class of torus homeomorphisms. Ergodic Theory and Dynamical Systems, v. 42 , n. 4 , p. 1517-1547, 2022Tradução . . Disponível em: https://doi.org/10.1017/etds.2020.137. Acesso em: 18 maio 2024.
    • APA

      Salomão, G. S., & Tal, F. A. (2022). Non-existence of sublinear diffusion for a class of torus homeomorphisms. Ergodic Theory and Dynamical Systems, 42 ( 4 ), 1517-1547. doi:10.1017/etds.2020.137
    • NLM

      Salomão GS, Tal FA. Non-existence of sublinear diffusion for a class of torus homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2022 ; 42 ( 4 ): 1517-1547.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2020.137
    • Vancouver

      Salomão GS, Tal FA. Non-existence of sublinear diffusion for a class of torus homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2022 ; 42 ( 4 ): 1517-1547.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2020.137
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e JACOIA, Bruno de Paula. A condition that implies full homotopical complexity of orbits for surface homeomorphisms. Ergodic Theory and Dynamical Systems, v. 41 , n. 1, p. 1 - 47, 2021Tradução . . Disponível em: https://doi.org/10.1017/etds.2019.62. Acesso em: 18 maio 2024.
    • APA

      Addas-Zanata, S., & Jacoia, B. de P. (2021). A condition that implies full homotopical complexity of orbits for surface homeomorphisms. Ergodic Theory and Dynamical Systems, 41 ( 1), 1 - 47. doi:10.1017/etds.2019.62
    • NLM

      Addas-Zanata S, Jacoia B de P. A condition that implies full homotopical complexity of orbits for surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2021 ; 41 ( 1): 1 - 47.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2019.62
    • Vancouver

      Addas-Zanata S, Jacoia B de P. A condition that implies full homotopical complexity of orbits for surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2021 ; 41 ( 1): 1 - 47.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2019.62
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TOPOLOGIA DINÂMICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador. A consequence of the growth of rotation sets for families of diffeomorphisms of the torus. Ergodic Theory and Dynamical Systems, v. 40, n. 6, p. 1441-1458, 2020Tradução . . Disponível em: https://doi.org/10.1017/etds.2018.120. Acesso em: 18 maio 2024.
    • APA

      Addas-Zanata, S. (2020). A consequence of the growth of rotation sets for families of diffeomorphisms of the torus. Ergodic Theory and Dynamical Systems, 40( 6), 1441-1458. doi:10.1017/etds.2018.120
    • NLM

      Addas-Zanata S. A consequence of the growth of rotation sets for families of diffeomorphisms of the torus [Internet]. Ergodic Theory and Dynamical Systems. 2020 ; 40( 6): 1441-1458.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2018.120
    • Vancouver

      Addas-Zanata S. A consequence of the growth of rotation sets for families of diffeomorphisms of the torus [Internet]. Ergodic Theory and Dynamical Systems. 2020 ; 40( 6): 1441-1458.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2018.120
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIAO, Gang et al. Approximation of Bernoulli measures for non-uniformly hyperbolic systems. Ergodic Theory and Dynamical Systems, v. 40, n. 1, p. 233-247, 2020Tradução . . Disponível em: https://doi.org/10.1017/etds.2018.33. Acesso em: 18 maio 2024.
    • APA

      Liao, G., Sun, W., Vargas, E., & Wang, S. (2020). Approximation of Bernoulli measures for non-uniformly hyperbolic systems. Ergodic Theory and Dynamical Systems, 40( 1), 233-247. doi:10.1017/etds.2018.33
    • NLM

      Liao G, Sun W, Vargas E, Wang S. Approximation of Bernoulli measures for non-uniformly hyperbolic systems [Internet]. Ergodic Theory and Dynamical Systems. 2020 ; 40( 1): 233-247.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2018.33
    • Vancouver

      Liao G, Sun W, Vargas E, Wang S. Approximation of Bernoulli measures for non-uniformly hyperbolic systems [Internet]. Ergodic Theory and Dynamical Systems. 2020 ; 40( 1): 233-247.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2018.33
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: PROCESSOS DE MARKOV, ENTROPIA, PROCESSOS ESTACIONÁRIOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e LAMBERT, Rodrigo. From the divergence between two measures to the shortest path between two observables. Ergodic Theory and Dynamical Systems, v. 39, n. 7, p. 1729-1744, 2019Tradução . . Disponível em: https://doi.org/10.1017/etds.2017.114. Acesso em: 18 maio 2024.
    • APA

      Abadi, M. N., & Lambert, R. (2019). From the divergence between two measures to the shortest path between two observables. Ergodic Theory and Dynamical Systems, 39( 7), 1729-1744. doi:10.1017/etds.2017.114
    • NLM

      Abadi MN, Lambert R. From the divergence between two measures to the shortest path between two observables [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 7): 1729-1744.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2017.114
    • Vancouver

      Abadi MN, Lambert R. From the divergence between two measures to the shortest path between two observables [Internet]. Ergodic Theory and Dynamical Systems. 2019 ; 39( 7): 1729-1744.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2017.114
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e GARIBALDI, Eduardo e THIEULLEN, Philippe. Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergodic Theory and Dynamical Systems, v. 38, n. 3, p. 863-885, 2018Tradução . . Disponível em: https://doi.org/10.1017/etds.2016.57. Acesso em: 18 maio 2024.
    • APA

      Bissacot, R., Garibaldi, E., & Thieullen, P. (2018). Zero-temperature phase diagram for double-well type potentials in the summable variation class. Ergodic Theory and Dynamical Systems, 38( 3), 863-885. doi:10.1017/etds.2016.57
    • NLM

      Bissacot R, Garibaldi E, Thieullen P. Zero-temperature phase diagram for double-well type potentials in the summable variation class [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 3): 863-885.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2016.57
    • Vancouver

      Bissacot R, Garibaldi E, Thieullen P. Zero-temperature phase diagram for double-well type potentials in the summable variation class [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 3): 863-885.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2016.57
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KOROPECKI, Andres e TAL, Fábio Armando. Fully essential dynamics for area-preserving surface homeomorphisms. Ergodic Theory and Dynamical Systems, v. 38, n. 5, p. 1791-1836, 2018Tradução . . Disponível em: https://doi.org/10.1017/etds.2016.110. Acesso em: 18 maio 2024.
    • APA

      Koropecki, A., & Tal, F. A. (2018). Fully essential dynamics for area-preserving surface homeomorphisms. Ergodic Theory and Dynamical Systems, 38( 5), 1791-1836. doi:10.1017/etds.2016.110
    • NLM

      Koropecki A, Tal FA. Fully essential dynamics for area-preserving surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 5): 1791-1836.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2016.110
    • Vancouver

      Koropecki A, Tal FA. Fully essential dynamics for area-preserving surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2018 ; 38( 5): 1791-1836.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2016.110
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄGER, T e TAL, Fábio Armando. Irrational rotation factors for conservative torus homeomorphisms. Ergodic Theory and Dynamical Systems, v. 37, n. 5, p. 1537-1546, 2017Tradução . . Disponível em: https://doi.org/10.1017/etds.2015.112. Acesso em: 18 maio 2024.
    • APA

      Jäger, T., & Tal, F. A. (2017). Irrational rotation factors for conservative torus homeomorphisms. Ergodic Theory and Dynamical Systems, 37( 5), 1537-1546. doi:10.1017/etds.2015.112
    • NLM

      Jäger T, Tal FA. Irrational rotation factors for conservative torus homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2017 ; 37( 5): 1537-1546.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2015.112
    • Vancouver

      Jäger T, Tal FA. Irrational rotation factors for conservative torus homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2017 ; 37( 5): 1537-1546.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2015.112
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS HAMILTONIANOS, DIFEOMORFISMOS, HOMOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAL, Fábio Armando. On non-contractible periodic orbits for surface homeomorphisms. Ergodic Theory and Dynamical Systems, v. 36, n. 5, p. 1644-1655, 2016Tradução . . Disponível em: https://doi.org/10.1017/etds.2014.131. Acesso em: 18 maio 2024.
    • APA

      Tal, F. A. (2016). On non-contractible periodic orbits for surface homeomorphisms. Ergodic Theory and Dynamical Systems, 36( 5), 1644-1655. doi:10.1017/etds.2014.131
    • NLM

      Tal FA. On non-contractible periodic orbits for surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2016 ; 36( 5): 1644-1655.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2014.131
    • Vancouver

      Tal FA. On non-contractible periodic orbits for surface homeomorphisms [Internet]. Ergodic Theory and Dynamical Systems. 2016 ; 36( 5): 1644-1655.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2014.131
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, DIFEOMORFISMOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS ZANATA, Salvador. Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior. Ergodic Theory and Dynamical Systems, v. 35, n. 1, p. 1-33, 2015Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.44. Acesso em: 18 maio 2024.
    • APA

      Addas Zanata, S. (2015). Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior. Ergodic Theory and Dynamical Systems, 35( 1), 1-33. doi:10.1017/etds.2013.44
    • NLM

      Addas Zanata S. Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 1): 1-33.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2013.44
    • Vancouver

      Addas Zanata S. Area-preserving diffeomorphisms of the torus whose rotation sets have non-empty interior [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 1): 1-33.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2013.44
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA, POLINÔMIOS, FUNÇÕES INTEIRAS, FUNÇÕES MEROMORFAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOMONACO, Luna. Parabolic-like mappings. Ergodic Theory and Dynamical Systems, v. 35, n. 07, p. 2171-2197, 2015Tradução . . Disponível em: https://doi.org/10.1017/etds.2014.27. Acesso em: 18 maio 2024.
    • APA

      Lomonaco, L. (2015). Parabolic-like mappings. Ergodic Theory and Dynamical Systems, 35( 07), 2171-2197. doi:10.1017/etds.2014.27
    • NLM

      Lomonaco L. Parabolic-like mappings [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 07): 2171-2197.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2014.27
    • Vancouver

      Lomonaco L. Parabolic-like mappings [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 07): 2171-2197.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2014.27
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOYLAND, Philip e CARVALHO, André Salles de e HALL, Toby. Symbol ratio minimax sequences in the lexicographic order. Ergodic Theory and Dynamical Systems, v. 35, n. 8. p. 2371-2396, 2015Tradução . . Disponível em: https://doi.org/10.1017/etds.2014.44. Acesso em: 18 maio 2024.
    • APA

      Boyland, P., Carvalho, A. S. de, & Hall, T. (2015). Symbol ratio minimax sequences in the lexicographic order. Ergodic Theory and Dynamical Systems, 35( 8. p. 2371-2396). doi:10.1017/etds.2014.44
    • NLM

      Boyland P, Carvalho AS de, Hall T. Symbol ratio minimax sequences in the lexicographic order [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 8. p. 2371-2396):[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2014.44
    • Vancouver

      Boyland P, Carvalho AS de, Hall T. Symbol ratio minimax sequences in the lexicographic order [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 8. p. 2371-2396):[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2014.44
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELMAN, Nancy e KOROPECKI, Andres e TAL, Fábio Armando. Rotation sets with non-empty interior and transitivity in the universal covering. Ergodic Theory and Dynamical Systems, v. 35, n. 3, p. 883-894, 2015Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.61. Acesso em: 18 maio 2024.
    • APA

      Guelman, N., Koropecki, A., & Tal, F. A. (2015). Rotation sets with non-empty interior and transitivity in the universal covering. Ergodic Theory and Dynamical Systems, 35( 3), 883-894. doi:10.1017/etds.2013.61
    • NLM

      Guelman N, Koropecki A, Tal FA. Rotation sets with non-empty interior and transitivity in the universal covering [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 3): 883-894.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2013.61
    • Vancouver

      Guelman N, Koropecki A, Tal FA. Rotation sets with non-empty interior and transitivity in the universal covering [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 3): 883-894.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2013.61
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: DINÂMICA TOPOLÓGICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador e TAL, Fábio Armando e GARCIA, Bráulio Augusto. Dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergodic Theory and Dynamical Systems, v. 34, n. 2, p. 409-422, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2012.156. Acesso em: 18 maio 2024.
    • APA

      Addas-Zanata, S., Tal, F. A., & Garcia, B. A. (2014). Dynamics of homeomorphisms of the torus homotopic to Dehn twists. Ergodic Theory and Dynamical Systems, 34( 2), 409-422. doi:10.1017/etds.2012.156
    • NLM

      Addas-Zanata S, Tal FA, Garcia BA. Dynamics of homeomorphisms of the torus homotopic to Dehn twists [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 2): 409-422.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2012.156
    • Vancouver

      Addas-Zanata S, Tal FA, Garcia BA. Dynamics of homeomorphisms of the torus homotopic to Dehn twists [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 2): 409-422.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2012.156
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo e FREIRE JÚNIOR, Ricardo dos Santos. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, v. 34, n. 4, p. 1103-1115, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2012.194. Acesso em: 18 maio 2024.
    • APA

      Bissacot, R., & Freire Júnior, R. dos S. (2014). On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, 34( 4), 1103-1115. doi:10.1017/etds.2012.194
    • NLM

      Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2012.194
    • Vancouver

      Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2012.194
  • Source: Ergodic Theory and Dynamical Systems. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, ESPAÇOS DE LORENTZ

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e ZEGHIB, Abdelghani. Actions of discrete groups on stationary Lorentz manifolds. Ergodic Theory and Dynamical Systems, v. 34, n. 5, p. 1640-1673, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2013.17. Acesso em: 18 maio 2024.
    • APA

      Piccione, P., & Zeghib, A. (2014). Actions of discrete groups on stationary Lorentz manifolds. Ergodic Theory and Dynamical Systems, 34( 5), 1640-1673. doi:10.1017/etds.2013.17
    • NLM

      Piccione P, Zeghib A. Actions of discrete groups on stationary Lorentz manifolds [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1640-1673.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2013.17
    • Vancouver

      Piccione P, Zeghib A. Actions of discrete groups on stationary Lorentz manifolds [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 5): 1640-1673.[citado 2024 maio 18 ] Available from: https://doi.org/10.1017/etds.2013.17

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024