Filtros : "IME" "Computational Optimization and Applications" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: OTIMIZAÇÃO NÃO LINEAR

    Disponível em 2025-04-15Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e MARTÍNEZ, José Mário. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10589-024-00572-w. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., Haeser, G., & Martínez, J. M. (2024). Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems. Computational Optimization and Applications. doi:10.1007/s10589-024-00572-w
    • NLM

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2024 ;[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
    • Vancouver

      Birgin EJG, Haeser G, Martínez JM. Safeguarded augmented Lagrangian algorithms with scaled stopping criterion for the subproblems [Internet]. Computational Optimization and Applications. 2024 ;[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-024-00572-w
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: INTERPOLAÇÃO, MÉTODOS ITERATIVOS, APROXIMAÇÃO POR MÍNIMOS QUADRADOS, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, v. 81, p. 689–715, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00344-w. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients. Computational Optimization and Applications, 81, 689–715. doi:10.1007/s10589-021-00344-w
    • NLM

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
    • Vancouver

      Birgin EJG, Martínez JM. Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients [Internet]. Computational Optimization and Applications. 2022 ; 81 689–715.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-021-00344-w
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 14 jul. 2024.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: OTIMIZAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg. Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization. [Editorial]. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00203-0. Acesso em: 14 jul. 2024. , 2020
    • APA

      Birgin, E. J. G. (2020). Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization. [Editorial]. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00203-0
    • NLM

      Birgin EJG. Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization. [Editorial] [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 615-619.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-020-00203-0
    • Vancouver

      Birgin EJG. Preface of the special issue dedicated to the XII Brazilian workshop on continuous optimization. [Editorial] [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 615-619.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-020-00203-0
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, L. F et al. An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00180-4. Acesso em: 14 jul. 2024. , 2020
    • APA

      Bueno, L. F., Haeser, G., Lara, F., & Rojas, F. N. (2020). An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00180-4
    • NLM

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
    • Vancouver

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e SANTOS, Luiz-Rafael. Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-019-00161-2. Acesso em: 14 jul. 2024. , 2020
    • APA

      Bueno, L. F., Haeser, G., & Santos, L. -R. (2020). Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-019-00161-2
    • NLM

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
    • Vancouver

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, v. 73, n. 3, p. 707-753, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10589-019-00089-7. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, 73( 3), 707-753. doi:10.1007/s10589-019-00089-7
    • NLM

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
    • Vancouver

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e HAESER, Gabriel e RAMOS, Alberto. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points. Computational Optimization and Applications, v. 69, n. 1, p. 51–75, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-017-9937-2. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., Haeser, G., & Ramos, A. (2018). Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points. Computational Optimization and Applications, 69( 1), 51–75. doi:10.1007/s10589-017-9937-2
    • NLM

      Birgin EJG, Haeser G, Ramos A. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points [Internet]. Computational Optimization and Applications. 2018 ; 69( 1): 51–75.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-017-9937-2
    • Vancouver

      Birgin EJG, Haeser G, Ramos A. Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points [Internet]. Computational Optimization and Applications. 2018 ; 69( 1): 51–75.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-017-9937-2
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, v. 70, n. 2, p. 615–639, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0005-3. Acesso em: 14 jul. 2024.
    • APA

      Haeser, G. (2018). A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, 70( 2), 615–639. doi:10.1007/s10589-018-0005-3
    • NLM

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
    • Vancouver

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO MATEMÁTICA, PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e BUENO, L. F e MARTINEZ, José Mario. Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10589-016-9849-6. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., Bueno, L. F., & Martinez, J. M. (2016). Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications. doi:10.1007/s10589-016-9849-6
    • NLM

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
    • Vancouver

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, ALGORITMOS, PROGRAMAÇÃO MATEMÁTICA, CIÊNCIA DA COMPUTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario e PRUDENTE, Leandro da Fonseca. Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, v. 60, n. 3, p. 609-631, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10589-014-9685-5. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., Martinez, J. M., & Prudente, L. da F. (2015). Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, 60( 3), 609-631. doi:10.1007/s10589-014-9685-5
    • NLM

      Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-014-9685-5
    • Vancouver

      Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-014-9685-5
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, J. M. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, v. 51, n. 3, p. 941-965, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10589-011-9396-0. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2012). Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization. Computational Optimization and Applications, 51( 3), 941-965. doi:10.1007/s10589-011-9396-0
    • NLM

      Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-011-9396-0
    • Vancouver

      Birgin EJG, Martinez JM. Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization [Internet]. Computational Optimization and Applications. 2012 ; 51( 3): 941-965.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-011-9396-0
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e GENTIL, Jan Marcel Paiva. Evaluating bound-constrained minimization software. Computational Optimization and Applications, v. 53, n. 2, p. 347-373, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10589-012-9466-y. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., & Gentil, J. M. P. (2012). Evaluating bound-constrained minimization software. Computational Optimization and Applications, 53( 2), 347-373. doi:10.1007/s10589-012-9466-y
    • NLM

      Birgin EJG, Gentil JMP. Evaluating bound-constrained minimization software [Internet]. Computational Optimization and Applications. 2012 ; 53( 2): 347-373.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-012-9466-y
    • Vancouver

      Birgin EJG, Gentil JMP. Evaluating bound-constrained minimization software [Internet]. Computational Optimization and Applications. 2012 ; 53( 2): 347-373.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-012-9466-y
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, R. et al. Second-order negative-curvature methods for box-constrained and general constrained optimization. Computational Optimization and Applications, v. 45, n. 2, p. 209-236, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10589-009-9240-y. Acesso em: 14 jul. 2024.
    • APA

      Andreani, R., Birgin, E. J. G., Martinez, J. M., & Schuverdt, M. L. (2010). Second-order negative-curvature methods for box-constrained and general constrained optimization. Computational Optimization and Applications, 45( 2), 209-236. doi:10.1007/s10589-009-9240-y
    • NLM

      Andreani R, Birgin EJG, Martinez JM, Schuverdt ML. Second-order negative-curvature methods for box-constrained and general constrained optimization [Internet]. Computational Optimization and Applications. 2010 ; 45( 2): 209-236.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-009-9240-y
    • Vancouver

      Andreani R, Birgin EJG, Martinez JM, Schuverdt ML. Second-order negative-curvature methods for box-constrained and general constrained optimization [Internet]. Computational Optimization and Applications. 2010 ; 45( 2): 209-236.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-009-9240-y
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: OTIMIZAÇÃO MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg. This special issue is dedicated to the VII Brazilian Workshop on Continuous Optimization.. [Prefácio]. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-010-9325-7. Acesso em: 14 jul. 2024. , 2010
    • APA

      Birgin, E. J. G. (2010). This special issue is dedicated to the VII Brazilian Workshop on Continuous Optimization.. [Prefácio]. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-010-9325-7
    • NLM

      Birgin EJG. This special issue is dedicated to the VII Brazilian Workshop on Continuous Optimization.. [Prefácio] [Internet]. Computational Optimization and Applications. 2010 ; 46( 2): 189-191.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-010-9325-7
    • Vancouver

      Birgin EJG. This special issue is dedicated to the VII Brazilian Workshop on Continuous Optimization.. [Prefácio] [Internet]. Computational Optimization and Applications. 2010 ; 46( 2): 189-191.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-010-9325-7
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRÉ, Thiago Afonso de e SILVA, Paulo J. S. Exact penalties for variational inequalities with applications to nonlinear complementary problems. Computational Optimization and Applications, v. 47, n. 3, p. 401-429, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10589-008-9232-3. Acesso em: 14 jul. 2024.
    • APA

      André, T. A. de, & Silva, P. J. S. (2010). Exact penalties for variational inequalities with applications to nonlinear complementary problems. Computational Optimization and Applications, 47( 3), 401-429. doi:10.1007/s10589-008-9232-3
    • NLM

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementary problems [Internet]. Computational Optimization and Applications. 2010 ; 47( 3): 401-429.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-008-9232-3
    • Vancouver

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementary problems [Internet]. Computational Optimization and Applications. 2010 ; 47( 3): 401-429.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-008-9232-3
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ECKSTEIN, Jonathan e SILVA, Paulo J. S. Proximal methods for nonlinear programming: double regularization and inexact subproblems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-009-9274-1. Acesso em: 14 jul. 2024. , 2010
    • APA

      Eckstein, J., & Silva, P. J. S. (2010). Proximal methods for nonlinear programming: double regularization and inexact subproblems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-009-9274-1
    • NLM

      Eckstein J, Silva PJS. Proximal methods for nonlinear programming: double regularization and inexact subproblems [Internet]. Computational Optimization and Applications. 2010 ; 46( 2): 167-188.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-009-9274-1
    • Vancouver

      Eckstein J, Silva PJS. Proximal methods for nonlinear programming: double regularization and inexact subproblems [Internet]. Computational Optimization and Applications. 2010 ; 46( 2): 167-188.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-009-9274-1
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: DUALIDADE EM VARIEDADES, FUNÇÕES GENERALIZADAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRÉ, Thiago Afonso de e SILVA, Paulo J. S. Exact penalties for variational inequalities with applications to nonlinear complementarity problems. Computational Optimization and Applications, v. 47, n. 3, p. 401-429, 2009Tradução . . Disponível em: https://doi.org/10.1007/s10589-008-9232-3. Acesso em: 14 jul. 2024.
    • APA

      André, T. A. de, & Silva, P. J. S. (2009). Exact penalties for variational inequalities with applications to nonlinear complementarity problems. Computational Optimization and Applications, 47( 3), 401-429. doi:10.1007/s10589-008-9232-3
    • NLM

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementarity problems [Internet]. Computational Optimization and Applications. 2009 ; 47( 3): 401-429.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-008-9232-3
    • Vancouver

      André TA de, Silva PJS. Exact penalties for variational inequalities with applications to nonlinear complementarity problems [Internet]. Computational Optimization and Applications. 2009 ; 47( 3): 401-429.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-008-9232-3
  • Source: Computational Optimization and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, v. 39, n. 1, p. 1-16, 2008Tradução . . Disponível em: https://doi.org/10.1007/s10589-007-9050-z. Acesso em: 14 jul. 2024.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2008). Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization. Computational Optimization and Applications, 39( 1), 1-16. doi:10.1007/s10589-007-9050-z
    • NLM

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-007-9050-z
    • Vancouver

      Birgin EJG, Martínez JM. Structured minimal-memory inexact quasi-Newton method and secant preconditioners for augmented Lagrangian optimization [Internet]. Computational Optimization and Applications. 2008 ; 39( 1): 1-16.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s10589-007-9050-z

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024