Filtros : "IME" "Communications in Mathematical Physics" Limpar

Filtros



Refine with date range


  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e KŘIŽKA, Libor. Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, n. 2, p. 841-891, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-020-03861-7. Acesso em: 14 jul. 2024.
    • APA

      Futorny, V., & Křižka, L. (2021). Positive energy representations of affine vertex algebras. Communications in Mathematical Physics, ( 2), 841-891. doi:10.1007/s00220-020-03861-7
    • NLM

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
    • Vancouver

      Futorny V, Křižka L. Positive energy representations of affine vertex algebras [Internet]. Communications in Mathematical Physics. 2021 ;( 2): 841-891.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-020-03861-7
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: SISTEMAS HAMILTONIANOS, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄGER, Tobias e KOROPECKI, Andres e TAL, Fábio Armando. On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, v. 383, p. 953-980, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00220-021-03995-2. Acesso em: 14 jul. 2024.
    • APA

      Jäger, T., Koropecki, A., & Tal, F. A. (2021). On the onset of diffusion in the kicked Harper model. Communications in Mathematical Physics, 383, 953-980. doi:10.1007/s00220-021-03995-2
    • NLM

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
    • Vancouver

      Jäger T, Koropecki A, Tal FA. On the onset of diffusion in the kicked Harper model [Internet]. Communications in Mathematical Physics. 2021 ; 383 953-980.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-021-03995-2
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: FÍSICA MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, v. 363, n. 3, p. 767-788, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00220-018-3233-6. Acesso em: 14 jul. 2024.
    • APA

      Bissacot, R., Endo, E. O., van Enter, A. C. D., & Le Ny, A. (2018). Entropic repulsion and lack of the g-measure property for Dyson models. Communications in Mathematical Physics, 363( 3), 767-788. doi:10.1007/s00220-018-3233-6
    • NLM

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-018-3233-6
    • Vancouver

      Bissacot R, Endo EO, van Enter ACD, Le Ny A. Entropic repulsion and lack of the g-measure property for Dyson models [Internet]. Communications in Mathematical Physics. 2018 ; 363( 3): 767-788.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-018-3233-6
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: FÍSICA MATEMÁTICA, GEOMETRIA ALGÉBRICA, ANÁLISE FUNCIONAL, ÁLGEBRAS DE OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKAWA, Tomoyuki e FUTORNY, Vyacheslav e RAMIREZ, Luis Enrique. Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, v. 353, p. 1151–1178, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2872-3. Acesso em: 14 jul. 2024.
    • APA

      Arakawa, T., Futorny, V., & Ramirez, L. E. (2017). Weight representations of admissible affine vertex algebras. Communications in Mathematical Physics, 353, 1151–1178. doi:10.1007/s00220-017-2872-3
    • NLM

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
    • Vancouver

      Arakawa T, Futorny V, Ramirez LE. Weight representations of admissible affine vertex algebras [Internet]. Communications in Mathematical Physics. 2017 ; 353 1151–1178.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-017-2872-3
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GRANTCHAROV, Dimitar e RAMÍREZ, Luis Enrique. New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, v. 355, n. 3, p. 1209–1241, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00220-017-2967-x. Acesso em: 14 jul. 2024.
    • APA

      Futorny, V., Grantcharov, D., & Ramírez, L. E. (2017). New singular Gelfand–Tsetlin gl(n)-modules of index 2. Communications in Mathematical Physics, 355( 3), 1209–1241. doi:10.1007/s00220-017-2967-x
    • NLM

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
    • Vancouver

      Futorny V, Grantcharov D, Ramírez LE. New singular Gelfand–Tsetlin gl(n)-modules of index 2 [Internet]. Communications in Mathematical Physics. 2017 ; 355( 3): 1209–1241.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-017-2967-x
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, v. 337, n. 1, p. 41-53, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00220-014-2268-6. Acesso em: 14 jul. 2024.
    • APA

      Bissacot, R., Cassandro, M., Cioletti, L., & Presutti, E. (2015). Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields. Communications in Mathematical Physics, 337( 1), 41-53. doi:10.1007/s00220-014-2268-6
    • NLM

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
    • Vancouver

      Bissacot R, Cassandro M, Cioletti L, Presutti E. Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields [Internet]. Communications in Mathematical Physics. 2015 ; 337( 1): 41-53.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-014-2268-6
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e VARGAS, Edson. Invariant measures for cherry flows. Communications in Mathematical Physics, v. 317, n. 1, p. 55-67, 2013Tradução . . Disponível em: https://doi.org/10.1007/s00220-012-1611-z. Acesso em: 14 jul. 2024.
    • APA

      Saghin, R., & Vargas, E. (2013). Invariant measures for cherry flows. Communications in Mathematical Physics, 317( 1), 55-67. doi:10.1007/s00220-012-1611-z
    • NLM

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-012-1611-z
    • Vancouver

      Saghin R, Vargas E. Invariant measures for cherry flows [Internet]. Communications in Mathematical Physics. 2013 ; 317( 1): 55-67.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-012-1611-z
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SAGHIN, Radu e SUN, Wenxiang e VARGAS, Edson. On Dirac physical measures for transitive flows. Communications in Mathematical Physics, v. 298, n. 3, p. 741-756, 2010Tradução . . Disponível em: https://doi.org/10.1007/s00220-010-1077-9. Acesso em: 14 jul. 2024.
    • APA

      Saghin, R., Sun, W., & Vargas, E. (2010). On Dirac physical measures for transitive flows. Communications in Mathematical Physics, 298( 3), 741-756. doi:10.1007/s00220-010-1077-9
    • NLM

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
    • Vancouver

      Saghin R, Sun W, Vargas E. On Dirac physical measures for transitive flows [Internet]. Communications in Mathematical Physics. 2010 ; 298( 3): 741-756.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-010-1077-9
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, v. 287, n. 3, p. 903-923, 2009Tradução . . Disponível em: https://doi.org/10.1007/s00220-009-0742-3. Acesso em: 14 jul. 2024.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2009). Genericity of nondegeneracy for light rays in stationary spacetimes. Communications in Mathematical Physics, 287( 3), 903-923. doi:10.1007/s00220-009-0742-3
    • NLM

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Genericity of nondegeneracy for light rays in stationary spacetimes [Internet]. Communications in Mathematical Physics. 2009 ; 287( 3): 903-923.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-009-0742-3
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS HAMILTONIANOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e ROMERO, Sandro Vieira. Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, v. 256, n. 2, p. 375-410, 2005Tradução . . Disponível em: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8. Acesso em: 14 jul. 2024.
    • APA

      Forger, F. M., & Romero, S. V. (2005). Covariant Poisson brackets in geometric field theory. Communications in Mathematical Physics, 256( 2), 375-410. Recuperado de https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • NLM

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2024 jul. 14 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
    • Vancouver

      Forger FM, Romero SV. Covariant Poisson brackets in geometric field theory [Internet]. Communications in Mathematical Physics. 2005 ; 256( 2): 375-410.[citado 2024 jul. 14 ] Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s00220-005-1287-8
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA DA REPRESENTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DIMITROV, Ivan e FUTORNY, Vyacheslav e PENKOV, Ivan. A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, v. 250, n. 1, p. 47-68, 2004Tradução . . Disponível em: https://doi.org/10.1007/s00220-004-1142-3. Acesso em: 14 jul. 2024.
    • APA

      Dimitrov, I., Futorny, V., & Penkov, I. (2004). A reduction theorem for highest weight modules over toroidal Lie algebras. Communications in Mathematical Physics, 250( 1), 47-68. doi:10.1007/s00220-004-1142-3
    • NLM

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
    • Vancouver

      Dimitrov I, Futorny V, Penkov I. A reduction theorem for highest weight modules over toroidal Lie algebras [Internet]. Communications in Mathematical Physics. 2004 ; 250( 1): 47-68.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-004-1142-3
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: RELATIVIDADE (FÍSICA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto et al. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, v. 235, n. 3, p. 545-563, 2003Tradução . . Disponível em: https://doi.org/10.1007/s00220-003-0793-9. Acesso em: 14 jul. 2024.
    • APA

      Giambó, R., Giannoni, F., Magli, G., & Piccione, P. (2003). New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court. Communications in Mathematical Physics, 235( 3), 545-563. doi:10.1007/s00220-003-0793-9
    • NLM

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
    • Vancouver

      Giambó R, Giannoni F, Magli G, Piccione P. New solutions of Einstein equations in spherical symmetry: the cosmic censor to the court [Internet]. Communications in Mathematical Physics. 2003 ; 235( 3): 545-563.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s00220-003-0793-9
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato e SCHONMANN, Roberto Henrique e SIDORAVICIUS, Vadlas. Stretched exponential fixation in stochastic ising models at zero temperature. Communications in Mathematical Physics, v. 228, n. 3, p. 495-518, 2002Tradução . . Disponível em: https://doi.org/10.1007/s002200200658. Acesso em: 14 jul. 2024.
    • APA

      Fontes, L. R., Schonmann, R. H., & Sidoravicius, V. (2002). Stretched exponential fixation in stochastic ising models at zero temperature. Communications in Mathematical Physics, 228( 3), 495-518. doi:10.1007/s002200200658
    • NLM

      Fontes LR, Schonmann RH, Sidoravicius V. Stretched exponential fixation in stochastic ising models at zero temperature [Internet]. Communications in Mathematical Physics. 2002 ; 228( 3): 495-518.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s002200200658
    • Vancouver

      Fontes LR, Schonmann RH, Sidoravicius V. Stretched exponential fixation in stochastic ising models at zero temperature [Internet]. Communications in Mathematical Physics. 2002 ; 228( 3): 495-518.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s002200200658
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. On the stability of double homoclinic loops. Communications in Mathematical Physics, v. 184, p. 251-272, 1997Tradução . . Disponível em: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf. Acesso em: 14 jul. 2024.
    • APA

      Ragazzo, C. G. (1997). On the stability of double homoclinic loops. Communications in Mathematical Physics, 184, 251-272. Recuperado de https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • NLM

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2024 jul. 14 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
    • Vancouver

      Ragazzo CG. On the stability of double homoclinic loops [Internet]. Communications in Mathematical Physics. 1997 ; 184 251-272.[citado 2024 jul. 14 ] Available from: https://link.springer.com/content/pdf/10.1007%2Fs002200050060.pdf
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, v. 187, p. 375-415, 1997Tradução . . Disponível em: https://doi.org/10.1007/s002200050141. Acesso em: 14 jul. 2024.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1997). A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results. Communications in Mathematical Physics, 187, 375-415. doi:10.1007/s002200050141
    • NLM

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s002200050141
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A variational theory for light rays in stably causal Lorentzian manifolds: regularity and multiplicity results [Internet]. Communications in Mathematical Physics. 1997 ; 187 375-415.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/s002200050141
  • Source: Communications in Mathematical Physics. Unidades: IME, IF

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel e PEREZ, José Fernando. Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, n. 170, p. 21-39, 1995Tradução . . Disponível em: https://doi.org/10.1007/BF02099437. Acesso em: 14 jul. 2024.
    • APA

      Dreifus, H. von, Klein, A., & Perez, J. F. (1995). Taming Griffiths singularities: infinite differentiability of quenched correlation functions. Communications in Mathematical Physics, ( 170), 21-39. doi:10.1007/BF02099437
    • NLM

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/BF02099437
    • Vancouver

      Dreifus H von, Klein A, Perez JF. Taming Griffiths singularities: infinite differentiability of quenched correlation functions [Internet]. Communications in Mathematical Physics. 1995 ;( 170): 21-39.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/BF02099437
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: TEORIA QUÂNTICA DE CAMPO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e LAARTZ, J e SCHÄPER, Ulrich. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models. Communications in Mathematical Physics, v. 159, n. 2, p. 319-328, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02102641. Acesso em: 14 jul. 2024.
    • APA

      Forger, F. M., Laartz, J., & Schäper, U. (1994). The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models. Communications in Mathematical Physics, 159( 2), 319-328. doi:10.1007/bf02102641
    • NLM

      Forger FM, Laartz J, Schäper U. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models [Internet]. Communications in Mathematical Physics. 1994 ; 159( 2): 319-328.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/bf02102641
    • Vancouver

      Forger FM, Laartz J, Schäper U. The algebra of the energy-momentum tensor and the Noether currents in classical non-linear sigma models [Internet]. Communications in Mathematical Physics. 1994 ; 159( 2): 319-328.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/bf02102641
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: ANÁLISE GLOBAL, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS HAMILTONIANOS, SISTEMAS LAGRANGIANOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, v. 166, n. 2, p. 255-277, 1994Tradução . . Disponível em: https://doi.org/10.1007/bf02112316. Acesso em: 14 jul. 2024.
    • APA

      Ragazzo, C. G. (1994). Nonintegrability of some Hamiltonian systems, scattering and analytic continuation. Communications in Mathematical Physics, 166( 2), 255-277. doi:10.1007/bf02112316
    • NLM

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/bf02112316
    • Vancouver

      Ragazzo CG. Nonintegrability of some Hamiltonian systems, scattering and analytic continuation [Internet]. Communications in Mathematical Physics. 1994 ; 166( 2): 255-277.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/bf02112316
  • Source: Communications in Mathematical Physics. Unidade: IME

    Subjects: PROCESSOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA, PERCOLAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NEVES, Eduardo Jordão e SCHONMANN, Roberto Henrique. Critical droplets and metastability for a Glauber dynamics at very low temperatures. Communications in Mathematical Physics, v. 137, p. 209-230, 1991Tradução . . Disponível em: https://doi.org/10.1007/BF02431878. Acesso em: 14 jul. 2024.
    • APA

      Neves, E. J., & Schonmann, R. H. (1991). Critical droplets and metastability for a Glauber dynamics at very low temperatures. Communications in Mathematical Physics, 137, 209-230. doi:10.1007/BF02431878
    • NLM

      Neves EJ, Schonmann RH. Critical droplets and metastability for a Glauber dynamics at very low temperatures [Internet]. Communications in Mathematical Physics. 1991 ; 137 209-230.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/BF02431878
    • Vancouver

      Neves EJ, Schonmann RH. Critical droplets and metastability for a Glauber dynamics at very low temperatures [Internet]. Communications in Mathematical Physics. 1991 ; 137 209-230.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/BF02431878
  • Source: Communications in Mathematical Physics. Unidade: IME

    Assunto: MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DREIFUS, Henrique von e KLEIN, Abel. Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, n. 140, p. 133-147, 1991Tradução . . Disponível em: https://doi.org/10.1007/BF02099294. Acesso em: 14 jul. 2024.
    • APA

      Dreifus, H. von, & Klein, A. (1991). Localization for random Schrödinger operators with correlated potentials. Communications in Mathematical Physics, ( 140), 133-147. doi:10.1007/BF02099294
    • NLM

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/BF02099294
    • Vancouver

      Dreifus H von, Klein A. Localization for random Schrödinger operators with correlated potentials [Internet]. Communications in Mathematical Physics. 1991 ;( 140): 133-147.[citado 2024 jul. 14 ] Available from: https://doi.org/10.1007/BF02099294

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024