Filtros : "IME" "GONCALVES, DACIBERG LIMA" Limpar

Filtros



Refine with date range


  • Source: Mathematical Proceedings of the Cambridge Philosophical Society. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLIGERI, Paolo e GONÇALVES, Daciberg Lima e GUASCHI, John. Lower central series, surface braid groups, surjections and permutations. Mathematical Proceedings of the Cambridge Philosophical Society, v. 172 , n. 2 , p. 373-399, 2022Tradução . . Disponível em: https://doi.org/10.1017/S0305004121000244. Acesso em: 12 jul. 2024.
    • APA

      Belligeri, P., Gonçalves, D. L., & Guaschi, J. (2022). Lower central series, surface braid groups, surjections and permutations. Mathematical Proceedings of the Cambridge Philosophical Society, 172 ( 2 ), 373-399. doi:10.1017/S0305004121000244
    • NLM

      Belligeri P, Gonçalves DL, Guaschi J. Lower central series, surface braid groups, surjections and permutations [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 ; 172 ( 2 ): 373-399.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1017/S0305004121000244
    • Vancouver

      Belligeri P, Gonçalves DL, Guaschi J. Lower central series, surface braid groups, surjections and permutations [Internet]. Mathematical Proceedings of the Cambridge Philosophical Society. 2022 ; 172 ( 2 ): 373-399.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1017/S0305004121000244
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORSARI, Lucilia Daruiz e CARDONA, Fernanda Soares Pinto e GONÇALVES, Daciberg Lima. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory. São Paulo Journal of Mathematical Sciences, v. 16, p. 508–538, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00278-5. Acesso em: 12 jul. 2024.
    • APA

      Borsari, L. D., Cardona, F. S. P., & Gonçalves, D. L. (2022). Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory. São Paulo Journal of Mathematical Sciences, 16, 508–538. doi:10.1007/s40863-021-00278-5
    • NLM

      Borsari LD, Cardona FSP, Gonçalves DL. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16 508–538.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s40863-021-00278-5
    • Vancouver

      Borsari LD, Cardona FSP, Gonçalves DL. Some aspects of Reidemeister fixed point theory, equivariant fxed point theory and coincidence theory [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16 508–538.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s40863-021-00278-5
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, v. 293, n. Artigo 107560, p. 1-16, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107560. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., Ocampo, O., & Pereiro, C. de M. e. (2021). Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, 293( Artigo 107560), 1-16. doi:10.1016/j.topol.2020.107560
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
  • Source: Monatshefte für Mathematik. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, REPRESENTAÇÕES DE GRUPOS FINITOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEKIMPE, Karel e GONÇALVES, Daciberg Lima e OCAMPO, Oscar. The R∞ property for pure Artin braid groups. Monatshefte für Mathematik, v. 195, p. 15-33, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00605-020-01484-7. Acesso em: 12 jul. 2024.
    • APA

      Dekimpe, K., Gonçalves, D. L., & Ocampo, O. (2021). The R∞ property for pure Artin braid groups. Monatshefte für Mathematik, 195, 15-33. doi:10.1007/s00605-020-01484-7
    • NLM

      Dekimpe K, Gonçalves DL, Ocampo O. The R∞ property for pure Artin braid groups [Internet]. Monatshefte für Mathematik. 2021 ; 195 15-33.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s00605-020-01484-7
    • Vancouver

      Dekimpe K, Gonçalves DL, Ocampo O. The R∞ property for pure Artin braid groups [Internet]. Monatshefte für Mathematik. 2021 ; 195 15-33.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s00605-020-01484-7
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, v. 293, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107567. Acesso em: 12 jul. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2021). On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107567
    • NLM

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANKARAN, Parameswaran e WONG, Peter. Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, v. 293, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107568. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2021). Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107568
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.topol.2020.107568
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.topol.2020.107568
  • Source: New York Journal of Mathematics. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, HOMOLOGIA

    Versão PublicadaAcesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo e GONÇALVES, Daciberg Lima. Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane. New York Journal of Mathematics, v. 27, p. 615-630, 2021Tradução . . Disponível em: http://nyjm.albany.edu/j/2021/27-24p.pdf. Acesso em: 12 jul. 2024.
    • APA

      Fenille, M. C., & Gonçalves, D. L. (2021). Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane. New York Journal of Mathematics, 27, 615-630. Recuperado de http://nyjm.albany.edu/j/2021/27-24p.pdf
    • NLM

      Fenille MC, Gonçalves DL. Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane [Internet]. New York Journal of Mathematics. 2021 ; 27 615-630.[citado 2024 jul. 12 ] Available from: http://nyjm.albany.edu/j/2021/27-24p.pdf
    • Vancouver

      Fenille MC, Gonçalves DL. Strongly surjective maps from certain two-complexes with trivial top-cohomology onto the projective plane [Internet]. New York Journal of Mathematics. 2021 ; 27 615-630.[citado 2024 jul. 12 ] Available from: http://nyjm.albany.edu/j/2021/27-24p.pdf
  • Source: Houston Journal of Mathematics. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DA DIMENSÃO

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e MONIS, Thaís F. M e SPIEŻ, Stanisław. Deficient and multiple points of maps into a manifold. Houston Journal of Mathematics, v. 46, n. 4, p. 1033–1052, 2020Tradução . . Disponível em: https://www.math.uh.edu/~hjm/Vol46-4.html. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Monis, T. F. M., & Spież, S. (2020). Deficient and multiple points of maps into a manifold. Houston Journal of Mathematics, 46( 4), 1033–1052. Recuperado de https://www.math.uh.edu/~hjm/Vol46-4.html
    • NLM

      Gonçalves DL, Monis TFM, Spież S. Deficient and multiple points of maps into a manifold [Internet]. Houston Journal of Mathematics. 2020 ; 46( 4): 1033–1052.[citado 2024 jul. 12 ] Available from: https://www.math.uh.edu/~hjm/Vol46-4.html
    • Vancouver

      Gonçalves DL, Monis TFM, Spież S. Deficient and multiple points of maps into a manifold [Internet]. Houston Journal of Mathematics. 2020 ; 46( 4): 1033–1052.[citado 2024 jul. 12 ] Available from: https://www.math.uh.edu/~hjm/Vol46-4.html
  • Source: Journal of Group Theory. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEKIMPE, Karel e GONÇALVES, Daciberg Lima. The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups. Journal of Group Theory, v. 23, n. 3, p. 545-562, 2020Tradução . . Disponível em: https://doi.org/10.1515/jgth-2018-0182. Acesso em: 12 jul. 2024.
    • APA

      Dekimpe, K., & Gonçalves, D. L. (2020). The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups. Journal of Group Theory, 23( 3), 545-562. doi:10.1515/jgth-2018-0182
    • NLM

      Dekimpe K, Gonçalves DL. The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups [Internet]. Journal of Group Theory. 2020 ; 23( 3): 545-562.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1515/jgth-2018-0182
    • Vancouver

      Dekimpe K, Gonçalves DL. The 𝑅∞-property for nilpotent quotients of Baumslag–Solitar groups [Internet]. Journal of Group Theory. 2020 ; 23( 3): 545-562.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1515/jgth-2018-0182
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TOPOLOGIA DINÂMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e KELLY, Michael R. Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 457-472, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.054. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., & Kelly, M. R. (2020). Index zero fixed points and 2-complexes with local separating points. Topological Methods in Nonlinear Analysis, 56( 2), 457-472. doi:10.12775/TMNA.2020.054
    • NLM

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2024 jul. 12 ] Available from: https://doi.org/10.12775/TMNA.2020.054
    • Vancouver

      Gonçalves DL, Kelly MR. Index zero fixed points and 2-complexes with local separating points [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 457-472.[citado 2024 jul. 12 ] Available from: https://doi.org/10.12775/TMNA.2020.054
  • Source: Annales de l'Instut Fourier. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS, GRUPOS NILPOTENTES, GRUPOS SIMÉTRICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e OCAMPO, Oscar. Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3. Annales de l'Instut Fourier, v. 70, n. 5, p. 2005-2025, 2020Tradução . . Disponível em: https://doi.org/10.5802/aif.3380. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2020). Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3. Annales de l'Instut Fourier, 70( 5), 2005-2025. doi:10.5802/aif.3380
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3 [Internet]. Annales de l'Instut Fourier. 2020 ; 70( 5): 2005-2025.[citado 2024 jul. 12 ] Available from: https://doi.org/10.5802/aif.3380
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. Embeddings of finite groups in Bn/Γk(Pn) for k = 2, 3 [Internet]. Annales de l'Instut Fourier. 2020 ; 70( 5): 2005-2025.[citado 2024 jul. 12 ] Available from: https://doi.org/10.5802/aif.3380
  • Source: Chebyshevskii Sbornik. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA DIFERENCIAL

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e WONG, Peter e XUEZHI , Zhao. Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, v. 21, n. 2, p. 94-108, 2020Tradução . . Disponível em: https://doi.org/10.22405/2226-8383-2020-21-2-94-108. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Wong, P., & Xuezhi , Z. (2020). Mapping degrees between homotopy space forms. Chebyshevskii Sbornik, 21( 2), 94-108. doi:10.22405/2226-8383-2020-21-2-94-108
    • NLM

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.[citado 2024 jul. 12 ] Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
    • Vancouver

      Gonçalves DL, Wong P, Xuezhi Z. Mapping degrees between homotopy space forms [Internet]. Chebyshevskii Sbornik. 2020 ; 21( 2): 94-108.[citado 2024 jul. 12 ] Available from: https://doi.org/10.22405/2226-8383-2020-21-2-94-108
  • Source: Topological Methods in Nonlinear Analysis. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 529-558, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.003. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Cardona, F. S. P., Guaschi, J., & Laass, V. C. (2020). The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle. Topological Methods in Nonlinear Analysis, 56( 2), 529-558. doi:10.12775/TMNA.2020.003
    • NLM

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2024 jul. 12 ] Available from: https://doi.org/10.12775/TMNA.2020.003
    • Vancouver

      Gonçalves DL, Cardona FSP, Guaschi J, Laass VC. The Borsuk-Ulam property for homotopy classes of maps from the torus to the Klein bottle [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 529-558.[citado 2024 jul. 12 ] Available from: https://doi.org/10.12775/TMNA.2020.003
  • Source: Communications in Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANKARAN, Parameswaran e WONG, Peter. Twisted conjugacy in free products. Communications in Algebra, v. 48, n. 9, p. 3916-3921, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1751848. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2020). Twisted conjugacy in free products. Communications in Algebra, 48( 9), 3916-3921. doi:10.1080/00927872.2020.1751848
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1080/00927872.2020.1751848
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1080/00927872.2020.1751848
  • Source: Journal of Fixed Point Theory and Applications. Unidade: IME

    Subjects: TOPOLOGIA ALGÉBRICA, MÉTODOS TOPOLÓGICOS, BRAIDS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e LAASS, Vinicius Casteluber. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, v. 21, n. 2, p. 1-29, 2019Tradução . . Disponível em: https://doi.org/10.1007/s11784-019-0693-z. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Laass, V. C. (2019). The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero. Journal of Fixed Point Theory and Applications, 21( 2), 1-29. doi:10.1007/s11784-019-0693-z
    • NLM

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s11784-019-0693-z
    • Vancouver

      Gonçalves DL, Guaschi J, Laass VC. The Borsuk–Ulam property for homotopy classes of self-maps of surfaces of Euler characteristic zero [Internet]. Journal of Fixed Point Theory and Applications. 2019 ; 21( 2): 1-29.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s11784-019-0693-z
  • Source: Acta Mathematica Sinica, English Series. Unidade: IME

    Subjects: TEOREMA DO PONTO FIXO, TOPOLOGIA ALGÉBRICA, GRUPOS NILPOTENTES, GRUPOS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e WONG, Peter. Coincidence Wecken property for nilmanifolds. Acta Mathematica Sinica, English Series, v. 35, n. 2, p. 239-244, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10114-018-7315-3. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., & Wong, P. (2019). Coincidence Wecken property for nilmanifolds. Acta Mathematica Sinica, English Series, 35( 2), 239-244. doi:10.1007/s10114-018-7315-3
    • NLM

      Gonçalves DL, Wong P. Coincidence Wecken property for nilmanifolds [Internet]. Acta Mathematica Sinica, English Series. 2019 ; 35( 2): 239-244.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s10114-018-7315-3
    • Vancouver

      Gonçalves DL, Wong P. Coincidence Wecken property for nilmanifolds [Internet]. Acta Mathematica Sinica, English Series. 2019 ; 35( 2): 239-244.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s10114-018-7315-3
  • Source: Bulletin of the Brazilian Mathematical Society, New Series. Unidade: IME

    Assunto: TOPOLOGIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANTOS, Anderson Paião dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces. Bulletin of the Brazilian Mathematical Society, New Series, v. 50, n. 3, p. 771-786, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00574-018-0098-4. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., & Santos, A. P. dos. (2019). Diagonal involutions and the Borsuk–Ulam property for product of surfaces. Bulletin of the Brazilian Mathematical Society, New Series, 50( 3), 771-786. doi:10.1007/s00574-018-0098-4
    • NLM

      Gonçalves DL, Santos AP dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2019 ; 50( 3): 771-786.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s00574-018-0098-4
    • Vancouver

      Gonçalves DL, Santos AP dos. Diagonal involutions and the Borsuk–Ulam property for product of surfaces [Internet]. Bulletin of the Brazilian Mathematical Society, New Series. 2019 ; 50( 3): 771-786.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/s00574-018-0098-4
  • Source: Journal of Algebra. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e GUASCHI, John e OCAMPO, Oscar. Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, v. 524, p. 160-186, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.01.010. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., Guaschi, J., & Ocampo, O. (2019). Almost-crystallographic groups as quotients of Artin braid groups. Journal of Algebra, 524, 160-186. doi:10.1016/j.jalgebra.2019.01.010
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.01.010
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O. Almost-crystallographic groups as quotients of Artin braid groups [Internet]. Journal of Algebra. 2019 ; 524 160-186.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.01.010
  • Source: International Journal of Algebra and Computation. Unidade: IME

    Subjects: GEOMETRIA ALGÉBRICA, TEORIA DOS GRUPOS, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e NASYBULLOV, Timur. Explicit solutions of certain orientable quadratic equations in free groups. International Journal of Algebra and Computation, v. 29, n. 08, p. 1451-1466, 2019Tradução . . Disponível em: https://doi.org/10.1142/s0218196719500589. Acesso em: 12 jul. 2024.
    • APA

      Gonçalves, D. L., & Nasybullov, T. (2019). Explicit solutions of certain orientable quadratic equations in free groups. International Journal of Algebra and Computation, 29( 08), 1451-1466. doi:10.1142/s0218196719500589
    • NLM

      Gonçalves DL, Nasybullov T. Explicit solutions of certain orientable quadratic equations in free groups [Internet]. International Journal of Algebra and Computation. 2019 ; 29( 08): 1451-1466.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1142/s0218196719500589
    • Vancouver

      Gonçalves DL, Nasybullov T. Explicit solutions of certain orientable quadratic equations in free groups [Internet]. International Journal of Algebra and Computation. 2019 ; 29( 08): 1451-1466.[citado 2024 jul. 12 ] Available from: https://doi.org/10.1142/s0218196719500589
  • Source: Proceedings: algebraic topology and related topics. Conference titles: East Asian Conference on Algebraic Topology - EACAT. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, GRUPOS DE WHITEHEAD

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e PETER WONG,. Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. 2019, Anais.. Singapore: Birkhäuser, 2019. Disponível em: https://doi.org/10.1007/978-981-13-5742-8_7. Acesso em: 12 jul. 2024.
    • APA

      Golasiński, M., Gonçalves, D. L., & Peter Wong,. (2019). Exponents of [Ω ( S r + 1 ) , Ω ( Y )]. In Proceedings: algebraic topology and related topics. Singapore: Birkhäuser. doi:10.1007/978-981-13-5742-8_7
    • NLM

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7
    • Vancouver

      Golasiński M, Gonçalves DL, Peter Wong. Exponents of [Ω ( S r + 1 ) , Ω ( Y )] [Internet]. Proceedings: algebraic topology and related topics. 2019 ;[citado 2024 jul. 12 ] Available from: https://doi.org/10.1007/978-981-13-5742-8_7

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024