Filtros : "IME" "Tomita, Artur Hideyuki" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Countably compact group topologies on arbitrarily large free Abelian groups. Topology and its Applications, v. 333, n. artigo 108538, p. 1-23, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108538. Acesso em: 13 set. 2024.
    • APA

      Bellini, M. K., Hart, K. P., Rodrigues, V. O., & Tomita, A. H. (2023). Countably compact group topologies on arbitrarily large free Abelian groups. Topology and its Applications, 333( artigo 108538), 1-23. doi:10.1016/j.topol.2023.108538
    • NLM

      Bellini MK, Hart KP, Rodrigues VO, Tomita AH. Countably compact group topologies on arbitrarily large free Abelian groups [Internet]. Topology and its Applications. 2023 ; 333( artigo 108538): 1-23.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2023.108538
    • Vancouver

      Bellini MK, Hart KP, Rodrigues VO, Tomita AH. Countably compact group topologies on arbitrarily large free Abelian groups [Internet]. Topology and its Applications. 2023 ; 333( artigo 108538): 1-23.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2023.108538
  • Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRAGA, Juliane Trianon. Pseudocompactness and ultrafilters. 2023. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2023. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/. Acesso em: 13 set. 2024.
    • APA

      Fraga, J. T. (2023). Pseudocompactness and ultrafilters (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/
    • NLM

      Fraga JT. Pseudocompactness and ultrafilters [Internet]. 2023 ;[citado 2024 set. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/
    • Vancouver

      Fraga JT. Pseudocompactness and ultrafilters [Internet]. 2023 ;[citado 2024 set. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11092023-114951/
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e FRAGA, Juliane Trianon. On powers of countably pracompact groups. Topology and its Applications, v. 327, n. artigo 108434, p. 1-31, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108434. Acesso em: 13 set. 2024.
    • APA

      Tomita, A. H., & Fraga, J. T. (2023). On powers of countably pracompact groups. Topology and its Applications, 327( artigo 108434), 1-31. doi:10.1016/j.topol.2023.108434
    • NLM

      Tomita AH, Fraga JT. On powers of countably pracompact groups [Internet]. Topology and its Applications. 2023 ; 327( artigo 108434): 1-31.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2023.108434
    • Vancouver

      Tomita AH, Fraga JT. On powers of countably pracompact groups [Internet]. Topology and its Applications. 2023 ; 327( artigo 108434): 1-31.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2023.108434
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e FRAGA, Juliane Trianon. Some pseudocompact-like properties in certain topological groups. Topology and its Applications, v. 314, n. artigo 108111, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2022.108111. Acesso em: 13 set. 2024.
    • APA

      Tomita, A. H., & Fraga, J. T. (2022). Some pseudocompact-like properties in certain topological groups. Topology and its Applications, 314( artigo 108111), 1-18. doi:10.1016/j.topol.2022.108111
    • NLM

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
    • Vancouver

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, TEORIA DOS CONJUNTOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZMÁN, O. et al. Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, v. 305, n. artigo 107872, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107872. Acesso em: 13 set. 2024.
    • APA

      Guzmán, O., Hrušák, M., Rodrigues, V. de O., Todorcevic, S., & Tomita, A. H. (2022). Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, 305( artigo 107872), 1-24. doi:10.1016/j.topol.2021.107872
    • NLM

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
    • Vancouver

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
  • Unidade: IME

    Subjects: TOPOLOGIA, HIPERESPAÇO, GRUPOS TOPOLÓGICOS, GRUPOS ABELIANOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Vinicius de Oliveira. Weakenings of compactness and normality on Isbell-Mrówka spaces, hyperspaces of Vietoris and Abelian groups. 2022. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/. Acesso em: 13 set. 2024.
    • APA

      Rodrigues, V. de O. (2022). Weakenings of compactness and normality on Isbell-Mrówka spaces, hyperspaces of Vietoris and Abelian groups (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/
    • NLM

      Rodrigues V de O. Weakenings of compactness and normality on Isbell-Mrówka spaces, hyperspaces of Vietoris and Abelian groups [Internet]. 2022 ;[citado 2024 set. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/
    • Vancouver

      Rodrigues V de O. Weakenings of compactness and normality on Isbell-Mrówka spaces, hyperspaces of Vietoris and Abelian groups [Internet]. 2022 ;[citado 2024 set. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-14062022-164023/
  • Unidade: IME

    Subjects: ÁLGEBRAS TOPOLÓGICAS, COMBINATÓRIA, GRUPOS COMPACTOS, TEORIA DOS CONJUNTOS, TOPOLOGIA CONJUNTÍSTICA, TOPOLOGIA

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff. Countably compact group topologies on torsion-free Abelian groups. 2022. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/. Acesso em: 13 set. 2024.
    • APA

      Bellini, M. K. (2022). Countably compact group topologies on torsion-free Abelian groups (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/
    • NLM

      Bellini MK. Countably compact group topologies on torsion-free Abelian groups [Internet]. 2022 ;[citado 2024 set. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/
    • Vancouver

      Bellini MK. Countably compact group topologies on torsion-free Abelian groups [Internet]. 2022 ;[citado 2024 set. 13 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-24042023-133123/
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, v. 297, n. art. 107703, p. 1-23, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107703. Acesso em: 13 set. 2024.
    • APA

      Bellini, M. K., Boero, A. C., Rodrigues, V. de O., & Tomita, A. H. (2021). Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, 297( art. 107703), 1-23. doi:10.1016/j.topol.2021.107703
    • NLM

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
    • Vancouver

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, v. 296, n. art. 107684, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107684. Acesso em: 13 set. 2024.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, 296( art. 107684), 1-14. doi:10.1016/j.topol.2021.107684
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, v. 294, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107653. Acesso em: 13 set. 2024.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, 294, 1-22. doi:10.1016/j.topol.2021.107653
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, S. e TOMITA, Artur Hideyuki. Selectively pseudocompact groups and p-compactness. Topology and its Applications, v. 285, n. art. 107380, p. 1-7, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107380. Acesso em: 13 set. 2024.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2020). Selectively pseudocompact groups and p-compactness. Topology and its Applications, 285( art. 107380), 1-7. doi:10.1016/j.topol.2020.107380
    • NLM

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, v. 259, p. 347-364, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.02.040. Acesso em: 13 set. 2024.
    • APA

      Tomita, A. H. (2019). A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, 259, 347-364. doi:10.1016/j.topol.2019.02.040
    • NLM

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2019.02.040
    • Vancouver

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2019.02.040
  • Source: Fundamenta Mathematicae. Unidade: IME

    Subjects: HIPERESPAÇO, TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, v. 247, n. 1, p. 99-108, 2019Tradução . . Disponível em: https://doi.org/10.4064/fm657-10-2018. Acesso em: 13 set. 2024.
    • APA

      Rodrigues, V. de O., & Tomita, A. H. (2019). Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, 247( 1), 99-108. doi:10.4064/fm657-10-2018
    • NLM

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.[citado 2024 set. 13 ] Available from: https://doi.org/10.4064/fm657-10-2018
    • Vancouver

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.[citado 2024 set. 13 ] Available from: https://doi.org/10.4064/fm657-10-2018
  • Source: Acta Mathematica Hungarica. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, GRUPOS ABELIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina e PEREIRA, Irene Castro e TOMITA, Artur Hideyuki. Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter. Acta Mathematica Hungarica, v. 159, n. 2, p. 414-428, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10474-019-00991-w. Acesso em: 13 set. 2024.
    • APA

      Boero, A. C., Pereira, I. C., & Tomita, A. H. (2019). Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter. Acta Mathematica Hungarica, 159( 2), 414-428. doi:10.1007/s10474-019-00991-w
    • NLM

      Boero AC, Pereira IC, Tomita AH. Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter [Internet]. Acta Mathematica Hungarica. 2019 ; 159( 2): 414-428.[citado 2024 set. 13 ] Available from: https://doi.org/10.1007/s10474-019-00991-w
    • Vancouver

      Boero AC, Pereira IC, Tomita AH. Countably compact group topologies on the free Abelian group of size continuum (and a Wallace semigroup) from a selective ultrafilter [Internet]. Acta Mathematica Hungarica. 2019 ; 159( 2): 414-428.[citado 2024 set. 13 ] Available from: https://doi.org/10.1007/s10474-019-00991-w
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, v. 267, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.106894. Acesso em: 13 set. 2024.
    • APA

      Bellini, M. K., Boero, A. C., Castro-Pereira, I., Rodrigues, V. de O., & Tomita, A. H. (2019). Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, 267. doi:10.1016/j.topol.2019.106894
    • NLM

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2019.106894
    • Vancouver

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2019.106894
  • Source: Journal of Applied Analysis. Unidade: IME

    Assunto: MEDIDA E INTEGRAÇÃO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador e TOMITA, Artur Hideyuki e ORTIZ-CASTILLO, Yasser Ferman. 𝜎-ideals and outer measures on the real line. Journal of Applied Analysis, v. 25, n. 1, p. 25-36, 2019Tradução . . Disponível em: https://doi.org/10.1515/jaa-2019-0003. Acesso em: 13 set. 2024.
    • APA

      Garcia-Ferreira, S., Tomita, A. H., & Ortiz-Castillo, Y. F. (2019). 𝜎-ideals and outer measures on the real line. Journal of Applied Analysis, 25( 1), 25-36. doi:10.1515/jaa-2019-0003
    • NLM

      Garcia-Ferreira S, Tomita AH, Ortiz-Castillo YF. 𝜎-ideals and outer measures on the real line [Internet]. Journal of Applied Analysis. 2019 ; 25( 1): 25-36.[citado 2024 set. 13 ] Available from: https://doi.org/10.1515/jaa-2019-0003
    • Vancouver

      Garcia-Ferreira S, Tomita AH, Ortiz-Castillo YF. 𝜎-ideals and outer measures on the real line [Internet]. Journal of Applied Analysis. 2019 ; 25( 1): 25-36.[citado 2024 set. 13 ] Available from: https://doi.org/10.1515/jaa-2019-0003
  • Source: Tsukuba Journal of Mathematics. Unidade: IME

    Assunto: TOPOLOGIA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Yasser F e TOMITA, Artur Hideyuki e YAMAUCHI, Takamitsu. Higson compactifications of Wallman type. Tsukuba Journal of Mathematics, v. 42, n. 2, p. 233-250, 2018Tradução . . Disponível em: https://doi.org/10.21099/tkbjm/1554170423. Acesso em: 13 set. 2024.
    • APA

      Ortiz-Castillo, Y. F., Tomita, A. H., & Yamauchi, T. (2018). Higson compactifications of Wallman type. Tsukuba Journal of Mathematics, 42( 2), 233-250. doi:10.21099/tkbjm/1554170423
    • NLM

      Ortiz-Castillo YF, Tomita AH, Yamauchi T. Higson compactifications of Wallman type [Internet]. Tsukuba Journal of Mathematics. 2018 ; 42( 2): 233-250.[citado 2024 set. 13 ] Available from: https://doi.org/10.21099/tkbjm/1554170423
    • Vancouver

      Ortiz-Castillo YF, Tomita AH, Yamauchi T. Higson compactifications of Wallman type [Internet]. Tsukuba Journal of Mathematics. 2018 ; 42( 2): 233-250.[citado 2024 set. 13 ] Available from: https://doi.org/10.21099/tkbjm/1554170423
  • Unidade: IME

    Subjects: TOPOLOGIA, TEORIA DOS CONJUNTOS, TEORIA DOS MODELOS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORDONI, Rafael de Lima. Minimal walks and applications. 2018. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2018. Disponível em: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-215130/. Acesso em: 13 set. 2024.
    • APA

      Bordoni, R. de L. (2018). Minimal walks and applications (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-215130/
    • NLM

      Bordoni R de L. Minimal walks and applications [Internet]. 2018 ;[citado 2024 set. 13 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-215130/
    • Vancouver

      Bordoni R de L. Minimal walks and applications [Internet]. 2018 ;[citado 2024 set. 13 ] Available from: http://www.teses.usp.br/teses/disponiveis/45/45131/tde-15022019-215130/
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, GRUPOS PSEUDOCOMPACTOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, Salvador e TOMITA, Artur Hideyuki. Finite powers of selectively pseudocompact groups. Topology and its Applications, v. 248, p. 50-58, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.08.009. Acesso em: 13 set. 2024.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2018). Finite powers of selectively pseudocompact groups. Topology and its Applications, 248, 50-58. doi:10.1016/j.topol.2018.08.009
    • NLM

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2018.08.009
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Finite powers of selectively pseudocompact groups [Internet]. Topology and its Applications. 2018 ; 248 50-58.[citado 2024 set. 13 ] Available from: https://doi.org/10.1016/j.topol.2018.08.009
  • Source: Fundamenta Mathematicae. Unidade: IME

    Assunto: TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Y. F. e TOMITA, Artur Hideyuki. Pseudocompactness and resolvability. Fundamenta Mathematicae, v. 241, n. 2, p. 127-142, 2018Tradução . . Disponível em: https://doi.org/10.4064/fm215-8-2017. Acesso em: 13 set. 2024.
    • APA

      Ortiz-Castillo, Y. F., & Tomita, A. H. (2018). Pseudocompactness and resolvability. Fundamenta Mathematicae, 241( 2), 127-142. doi:10.4064/fm215-8-2017
    • NLM

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.[citado 2024 set. 13 ] Available from: https://doi.org/10.4064/fm215-8-2017
    • Vancouver

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.[citado 2024 set. 13 ] Available from: https://doi.org/10.4064/fm215-8-2017

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024