Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph (2022)
Source: Mathematische Zeitschrift. Unidade: IME
Subjects: SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS
ABNT
PAVA, Jaime Angulo e PLAZA, Ramón G. Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph. Mathematische Zeitschrift, v. 300, n. 3, p. 2885-2915, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02899-0. Acesso em: 27 set. 2023.APA
Pava, J. A., & Plaza, R. G. (2022). Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph. Mathematische Zeitschrift, 300( 3), 2885-2915. doi:10.1007/s00209-021-02899-0NLM
Pava JA, Plaza RG. Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph [Internet]. Mathematische Zeitschrift. 2022 ; 300( 3): 2885-2915.[citado 2023 set. 27 ] Available from: https://doi.org/10.1007/s00209-021-02899-0Vancouver
Pava JA, Plaza RG. Unstable kink and anti-kink profile for the sine-Gordon equation on a Y -junction graph [Internet]. Mathematische Zeitschrift. 2022 ; 300( 3): 2885-2915.[citado 2023 set. 27 ] Available from: https://doi.org/10.1007/s00209-021-02899-0