Filtros : "IME" "Haeser, Gabriel" Limpar

Filtros



Refine with date range


  • Source: Set-Valued and Variational Analysis. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications. Set-Valued and Variational Analysis, v. 31, n. artigo 3, p. 1-27, 2023Tradução . . Disponível em: https://doi.org/10.1007/s11228-023-00666-3. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Haeser, G., Mito, L., & Ramírez, H. (2023). Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications. Set-Valued and Variational Analysis, 31( artigo 3), 1-27. doi:10.1007/s11228-023-00666-3
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H. Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 3): 1-27.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11228-023-00666-3
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H. Sequential constant rank constraint qualifications for nonlinear semidefinite programming with algorithmic applications [Internet]. Set-Valued and Variational Analysis. 2023 ; 31( artigo 3): 1-27.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11228-023-00666-3
  • Source: The Journal of Geometric Analysis. Unidade: IME

    Subjects: CONTROLE ÓTIMO, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of nalls. The Journal of Geometric Analysis, v. 33, n. artigo 184, p. 1-28, 2023Tradução . . Disponível em: https://doi.org/10.1007/s12220-023-01241-w. Acesso em: 05 jun. 2023.
    • APA

      Birgin, E. J. G., Fernandez, L. dos S., Haeser, G., & Laurain, A. (2023). Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of nalls. The Journal of Geometric Analysis, 33( artigo 184), 1-28. doi:10.1007/s12220-023-01241-w
    • NLM

      Birgin EJG, Fernandez L dos S, Haeser G, Laurain A. Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of nalls [Internet]. The Journal of Geometric Analysis. 2023 ; 33( artigo 184): 1-28.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s12220-023-01241-w
    • Vancouver

      Birgin EJG, Fernandez L dos S, Haeser G, Laurain A. Optimization of the first Dirichlet laplacian eigenvalue with respect to a union of nalls [Internet]. The Journal of Geometric Analysis. 2023 ; 33( artigo 184): 1-28.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s12220-023-01241-w
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMIJO, Nicolas F. e BELLO-CRUZ, Yunier e HAESER, Gabriel. On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, v. 665, p. 291-314, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2023.02.001. Acesso em: 05 jun. 2023.
    • APA

      Armijo, N. F., Bello-Cruz, Y., & Haeser, G. (2023). On the convergence of iterative schemes for solving a piecewise linear system of equations. Linear Algebra and its Applications, 665, 291-314. doi:10.1016/j.laa.2023.02.001
    • NLM

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
    • Vancouver

      Armijo NF, Bello-Cruz Y, Haeser G. On the convergence of iterative schemes for solving a piecewise linear system of equations [Internet]. Linear Algebra and its Applications. 2023 ; 665 291-314.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1016/j.laa.2023.02.001
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10107-023-01942-8. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, H., & Silveira, T. P. da. (2023). First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition. Mathematical Programming. doi:10.1007/s10107-023-01942-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ;[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H, Silveira TP da. First- and second-order optimality conditions for second-order cone and semidefinite programming under a constant rank condition [Internet]. Mathematical Programming. 2023 ;[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10107-023-01942-8
  • Source: Mathematics of Operations Research. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, v. 47, n. 3, p. 2160-2185, 2022Tradução . . Disponível em: https://doi.org/10.1287/moor.2021.1203. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Gómez, W., Haeser, G., Mito, L., & Ramos, A. (2022). On optimality conditions for nonlinear conic programming. Mathematics of Operations Research, 47( 3), 2160-2185. doi:10.1287/moor.2021.1203
    • NLM

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1287/moor.2021.1203
    • Vancouver

      Andreani R, Gómez W, Haeser G, Mito L, Ramos A. On optimality conditions for nonlinear conic programming [Internet]. Mathematics of Operations Research. 2022 ; 47( 3): 2160-2185.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1287/moor.2021.1203
  • Source: Set-Valued and Varational Analysis. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO CONVEXA

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Erratum to New constraint qualifications and optimality conditions for second order cone programs. Set-Valued and Varational Analysis, v. 30, n. 1, p. 329-333, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11228-021-00573-5. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Ramírez, H., Santos, D. O., Silva, P. J. S., & Silveira, T. P. da. (2022). Erratum to New constraint qualifications and optimality conditions for second order cone programs. Set-Valued and Varational Analysis, 30( 1), 329-333. doi:10.1007/s11228-021-00573-5
    • NLM

      Andreani R, Fukuda EH, Haeser G, Ramírez H, Santos DO, Silva PJS, Silveira TP da. Erratum to New constraint qualifications and optimality conditions for second order cone programs [Internet]. Set-Valued and Varational Analysis. 2022 ; 30( 1): 329-333.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11228-021-00573-5
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Ramírez H, Santos DO, Silva PJS, Silveira TP da. Erratum to New constraint qualifications and optimality conditions for second order cone programs [Internet]. Set-Valued and Varational Analysis. 2022 ; 30( 1): 329-333.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11228-021-00573-5
  • Source: Numerical Algorithms. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, v. 90, n. 2, p. 851-877, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11075-021-01212-8. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramos, A., & Secchin, L. D. (2022). On the best achievable quality of limit points of augmented Lagrangian schemes. Numerical Algorithms, 90( 2), 851-877. doi:10.1007/s11075-021-01212-8
    • NLM

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramos A, Secchin LD. On the best achievable quality of limit points of augmented Lagrangian schemes [Internet]. Numerical Algorithms. 2022 ; 90( 2): 851-877.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11075-021-01212-8
  • Source: Optimization Letters. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming. Optimization Letters, v. 16, n. 2, p. 589-610, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11590-021-01737-w. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, H., Santos, D. O., & Silveira, ‪T. P. da. (2022). Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming. Optimization Letters, 16( 2), 589-610. doi:10.1007/s11590-021-01737-w
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez H, Santos DO, Silveira ‪TP da. Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming [Internet]. Optimization Letters. 2022 ; 16( 2): 589-610.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11590-021-01737-w
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez H, Santos DO, Silveira ‪TP da. Naive constant rank-type constraint qualifications for multifold second-order cone programming and semidefinite programming [Internet]. Optimization Letters. 2022 ; 16( 2): 589-610.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s11590-021-01737-w
  • Source: Mathematical Programming Computation. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, v. 14, n. 1, p. 121-146, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12532-021-00207-9. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., Secchin, L. D., & Silva e Silva, P. J. (2022). On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, 14( 1), 121-146. doi:10.1007/s12532-021-00207-9
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, v. 195, p. 42-78, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10957-022-02056-5. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, C. H., & Silveira, T. P. da. (2022). Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, 195, 42-78. doi:10.1007/s10957-022-02056-5
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
  • Unidade: IME

    Subjects: ALGORITMOS, OTIMIZAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MITO, Leonardo. Topics in nonlinear conic optimization and applications. 2022. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2022. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/pt-br.php. Acesso em: 05 jun. 2023.
    • APA

      Mito, L. (2022). Topics in nonlinear conic optimization and applications (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/pt-br.php
    • NLM

      Mito L. Topics in nonlinear conic optimization and applications [Internet]. 2022 ;[citado 2023 jun. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/pt-br.php
    • Vancouver

      Mito L. Topics in nonlinear conic optimization and applications [Internet]. 2022 ;[citado 2023 jun. 05 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45132/tde-30032022-212754/pt-br.php
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 05 jun. 2023.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: Operations Research Letters. Unidade: IME

    Assunto: OTIMIZAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier. Operations Research Letters, v. 49, n. 6, p. 883-889, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.orl.2021.09.008. Acesso em: 05 jun. 2023.
    • APA

      Haeser, G., & Ramos, A. (2021). On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier. Operations Research Letters, 49( 6), 883-889. doi:10.1016/j.orl.2021.09.008
    • NLM

      Haeser G, Ramos A. On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier [Internet]. Operations Research Letters. 2021 ; 49( 6): 883-889.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1016/j.orl.2021.09.008
    • Vancouver

      Haeser G, Ramos A. On constraint qualifications for second-order optimality conditions depending on a single Lagrange multiplier [Internet]. Operations Research Letters. 2021 ; 49( 6): 883-889.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1016/j.orl.2021.09.008
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO CONVEXA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e HINDER, Oliver e YE, Yinyu. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, v. 186, n. 1-2, p. 257-288, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10107-019-01454-4. Acesso em: 05 jun. 2023.
    • APA

      Haeser, G., Hinder, O., & Ye, Y. (2021). On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, 186( 1-2), 257-288. doi:10.1007/s10107-019-01454-4
    • NLM

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
    • Vancouver

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
  • Source: Linear and Multilinear Algebra. Unidade: IME

    Subjects: MATRIZES, ESPAÇOS VETORIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMARGO, André Pierro de e HAESER, Gabriel. A note on linearly dependent symmetric matrices. Linear and Multilinear Algebra, v. 69, n. 13, p. 2539-2545, 2021Tradução . . Disponível em: http://dx.doi.org/10.1080/03081087.2019.1682495. Acesso em: 05 jun. 2023.
    • APA

      Camargo, A. P. de, & Haeser, G. (2021). A note on linearly dependent symmetric matrices. Linear and Multilinear Algebra, 69( 13), 2539-2545. doi:10.1080/03081087.2019.1682495
    • NLM

      Camargo AP de, Haeser G. A note on linearly dependent symmetric matrices [Internet]. Linear and Multilinear Algebra. 2021 ; 69( 13): 2539-2545.[citado 2023 jun. 05 ] Available from: http://dx.doi.org/10.1080/03081087.2019.1682495
    • Vancouver

      Camargo AP de, Haeser G. A note on linearly dependent symmetric matrices [Internet]. Linear and Multilinear Algebra. 2021 ; 69( 13): 2539-2545.[citado 2023 jun. 05 ] Available from: http://dx.doi.org/10.1080/03081087.2019.1682495
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, v. 187, n. 2, p. 469-487, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01749-z. Acesso em: 05 jun. 2023.
    • APA

      Haeser, G., & Ramos, A. (2020). Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, 187( 2), 469-487. doi:10.1007/s10957-020-01749-z
    • NLM

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
    • Vancouver

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
  • Source: Online seminar. Conference titles: Seminário Brasileiro de Otimização Contínua. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. Posto constante para cones de segunda-ordem. 2020, Anais.. São Paulo: IME-USP, 2020. . Acesso em: 05 jun. 2023.
    • APA

      Haeser, G. (2020). Posto constante para cones de segunda-ordem. In Online seminar. São Paulo: IME-USP.
    • NLM

      Haeser G. Posto constante para cones de segunda-ordem. Online seminar. 2020 ;((1 h 05 mi 15 seg.):[citado 2023 jun. 05 ]
    • Vancouver

      Haeser G. Posto constante para cones de segunda-ordem. Online seminar. 2020 ;((1 h 05 mi 15 seg.):[citado 2023 jun. 05 ]
  • Source: Computational and Applied Mathematics. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, GEOMETRIA ALGÉBRICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem. Computational and Applied Mathematics, v. 39, 2020Tradução . . Disponível em: https://doi.org/10.1007/s40314-019-0991-5. Acesso em: 05 jun. 2023.
    • APA

      Birgin, E. J. G., Gómez, W., Haeser, G., Mito, L. M., & Santos, D. O. (2020). An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem. Computational and Applied Mathematics, 39. doi:10.1007/s40314-019-0991-5
    • NLM

      Birgin EJG, Gómez W, Haeser G, Mito LM, Santos DO. An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem [Internet]. Computational and Applied Mathematics. 2020 ; 39[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s40314-019-0991-5
    • Vancouver

      Birgin EJG, Gómez W, Haeser G, Mito LM, Santos DO. An Augmented Lagrangian algorithm for nonlinear semidefinite programming applied to the covering problem [Internet]. Computational and Applied Mathematics. 2020 ; 39[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s40314-019-0991-5
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, L. F et al. An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00180-4. Acesso em: 05 jun. 2023. , 2020
    • APA

      Bueno, L. F., Haeser, G., Lara, F., & Rojas, F. N. (2020). An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00180-4
    • NLM

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
    • Vancouver

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2023 jun. 05 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, A. New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, v. 184, p. 494-506, 2020Tradução . . Disponível em: http://dx.doi.org/10.1007/s10957-019-01603-x. Acesso em: 05 jun. 2023.
    • APA

      Haeser, G., & Ramos, A. (2020). New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, 184, 494-506. doi:10.1007/s10957-019-01603-x
    • NLM

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2023 jun. 05 ] Available from: http://dx.doi.org/10.1007/s10957-019-01603-x
    • Vancouver

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2023 jun. 05 ] Available from: http://dx.doi.org/10.1007/s10957-019-01603-x

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2023