Filters : "ICMC" "Academic Press/Elsevier" Limpar

Filters



Refine with date range


  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Equações Diferenciais, Equação De Schrodinger

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank D. M; CARVALHO, Alexandre Nolasco de; DLOTKO, Tomasz; NASCIMENTO, Marcelo J. D. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 457, n. Ja 2018, p. 336-360, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.08.014 > DOI: 10.1016/j.jmaa.2017.08.014.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 452, n. 1, p. 258-296, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.03.008 > DOI: 10.1016/j.jmaa.2017.03.008.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Da Onda, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu; MARÍN-RUBIO, Pedro; CHUÑO, Christian Manuel Surco. Dynamics of wave equations with moving boundary. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 262, n. 5, p. 3317-3342, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jde.2016.11.030 > DOI: 10.1016/j.jde.2016.11.030.
    • APA

      Ma, T. F., Marín-Rubio, P., & Chuño, C. M. S. (2017). Dynamics of wave equations with moving boundary. Journal of Differential Equations, 262( 5), 3317-3342. doi:10.1016/j.jde.2016.11.030
    • NLM

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.030
    • Vancouver

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.030
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Ordinárias, Integração

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; GRAU, R; MESQUITA, J. G; TOON, E. Boundedness of solutions of measure differential equations and dynamic equations on time scales. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 263, n. 1, p. 26-56, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jde.2017.02.008 > DOI: 10.1016/j.jde.2017.02.008.
    • APA

      Federson, M. C. A. B., Grau, R., Mesquita, J. G., & Toon, E. (2017). Boundedness of solutions of measure differential equations and dynamic equations on time scales. Journal of Differential Equations, 263( 1), 26-56. doi:10.1016/j.jde.2017.02.008
    • NLM

      Federson MCAB, Grau R, Mesquita JG, Toon E. Boundedness of solutions of measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2017 ; 263( 1): 26-56.Available from: http://dx.doi.org/10.1016/j.jde.2017.02.008
    • Vancouver

      Federson MCAB, Grau R, Mesquita JG, Toon E. Boundedness of solutions of measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2017 ; 263( 1): 26-56.Available from: http://dx.doi.org/10.1016/j.jde.2017.02.008
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Equações Diferenciais Parciais, Equações Da Onda, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M; CARVALHO, Alexandre Nolasco de; CHOLEWA, J. W; NASCIMENTO, M. J. D. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 450, n. 1, p. 377-405, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.01.024 > DOI: 10.1016/j.jmaa.2017.01.024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAVALCANTI, M. M; FATORI, L. H; MA, To Fu. Attractors for wave equations with degenerate memory. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 260, n. Ja 2016, p. 56-83, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jde.2015.08.050 > DOI: 10.1016/j.jde.2015.08.050.
    • APA

      Cavalcanti, M. M., Fatori, L. H., & Ma, T. F. (2016). Attractors for wave equations with degenerate memory. Journal of Differential Equations, 260( Ja 2016), 56-83. doi:10.1016/j.jde.2015.08.050
    • NLM

      Cavalcanti MM, Fatori LH, Ma TF. Attractors for wave equations with degenerate memory [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 56-83.Available from: http://dx.doi.org/10.1016/j.jde.2015.08.050
    • Vancouver

      Cavalcanti MM, Fatori LH, Ma TF. Attractors for wave equations with degenerate memory [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 56-83.Available from: http://dx.doi.org/10.1016/j.jde.2015.08.050
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Análise Funcional, Espaços Homogêneos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, V. S; MENEGATTO, Valdir Antônio. Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 434, n. 1, p. 698-712, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2015.09.040 > DOI: 10.1016/j.jmaa.2015.09.040.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2016). Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 434( 1), 698-712. doi:10.1016/j.jmaa.2015.09.040
    • NLM

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.09.040
    • Vancouver

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.09.040
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio. Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 435, n. 1, p. 286-301, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2015.10.026 > DOI: 10.1016/j.jmaa.2015.10.026.
    • APA

      Guella, J. C., & Menegatto, V. A. (2016). Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, 435( 1), 286-301. doi:10.1016/j.jmaa.2015.10.026
    • NLM

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.10.026
    • Vancouver

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.10.026
  • In: Journal of Number Theory. Unidade: ICMC

    Subjects: álgebra, Curvas Algébricas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins. Frobenius nonclassical components of curves with separated variables. Journal of Number Theory, San Diego, Academic Press/Elsevier, v. 159, p. 402-425, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jnt.2015.07.006 > DOI: 10.1016/j.jnt.2015.07.006.
    • APA

      Borges Filho, H. M. (2016). Frobenius nonclassical components of curves with separated variables. Journal of Number Theory, 159, 402-425. doi:10.1016/j.jnt.2015.07.006
    • NLM

      Borges Filho HM. Frobenius nonclassical components of curves with separated variables [Internet]. Journal of Number Theory. 2016 ; 159 402-425.Available from: http://dx.doi.org/10.1016/j.jnt.2015.07.006
    • Vancouver

      Borges Filho HM. Frobenius nonclassical components of curves with separated variables [Internet]. Journal of Number Theory. 2016 ; 159 402-425.Available from: http://dx.doi.org/10.1016/j.jnt.2015.07.006
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Análise Global

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco; MEDEIRA, Cleber de; KIRILOV, Alexandre; ZANI, Sérgio Luís. On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 444, n. 1, p. 527-549, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2016.06.045 > DOI: 10.1016/j.jmaa.2016.06.045.
    • APA

      Bergamasco, A. P., Medeira, C. de, Kirilov, A., & Zani, S. L. (2016). On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, 444( 1), 527-549. doi:10.1016/j.jmaa.2016.06.045
    • NLM

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.045
    • Vancouver

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.045
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Singularidades, Teoria Qualitativa, Equações Diferenciais Ordinárias

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, J; MEZA-SARMIENTO, I. S; OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse Bott integrable systems on surfaces. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 260, n. Ja 2016, p. 688-707, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jde.2015.09.008 > DOI: 10.1016/j.jde.2015.09.008.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2016). Singular levels and topological invariants of Morse Bott integrable systems on surfaces. Journal of Differential Equations, 260( Ja 2016), 688-707. doi:10.1016/j.jde.2015.09.008
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse Bott integrable systems on surfaces [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 688-707.Available from: http://dx.doi.org/10.1016/j.jde.2015.09.008
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse Bott integrable systems on surfaces [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 688-707.Available from: http://dx.doi.org/10.1016/j.jde.2015.09.008
  • In: Finite Fields and their Applications. Unidade: ICMC

    Subjects: álgebra, Curvas Algébricas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins; SEPÚLVEDA, A; TIZZIOTTI, G. Weierstrass semigroup and automorphism group of the curves 'X IND. N,R'. Finite Fields and their Applications, San Diego, Academic Press/Elsevier, v. No 2015, p. 121-132, 2015. Disponível em: < http://dx.doi.org/10.1016/j.ffa.2015.07.004 > DOI: 10.1016/j.ffa.2015.07.004.
    • APA

      Borges Filho, H. M., Sepúlveda, A., & Tizziotti, G. (2015). Weierstrass semigroup and automorphism group of the curves 'X IND. N,R'. Finite Fields and their Applications, No 2015, 121-132. doi:10.1016/j.ffa.2015.07.004
    • NLM

      Borges Filho HM, Sepúlveda A, Tizziotti G. Weierstrass semigroup and automorphism group of the curves 'X IND. N,R' [Internet]. Finite Fields and their Applications. 2015 ; No 2015 121-132.Available from: http://dx.doi.org/10.1016/j.ffa.2015.07.004
    • Vancouver

      Borges Filho HM, Sepúlveda A, Tizziotti G. Weierstrass semigroup and automorphism group of the curves 'X IND. N,R' [Internet]. Finite Fields and their Applications. 2015 ; No 2015 121-132.Available from: http://dx.doi.org/10.1016/j.ffa.2015.07.004
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Funcionais, Equações Diferenciais Ordinárias, Equações Diferenciais Parciais, Equações Integrais, Integração, Sistemas Dinâmicos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; BORTOLAN, M. C; CARVALHO, Alexandre Nolasco de; CZAJA, R. Global attractors for impulsive dynamical systems: a precompact approach. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 259, n. 7, p. 2602-2625, 2015. Disponível em: < http://dx.doi.org/10.1016/j.jde.2015.03.033 > DOI: 10.1016/j.jde.2015.03.033.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Carvalho, A. N. de, & Czaja, R. (2015). Global attractors for impulsive dynamical systems: a precompact approach. Journal of Differential Equations, 259( 7), 2602-2625. doi:10.1016/j.jde.2015.03.033
    • NLM

      Bonotto E de M, Bortolan MC, Carvalho AN de, Czaja R. Global attractors for impulsive dynamical systems: a precompact approach [Internet]. Journal of Differential Equations. 2015 ; 259( 7): 2602-2625.Available from: http://dx.doi.org/10.1016/j.jde.2015.03.033
    • Vancouver

      Bonotto E de M, Bortolan MC, Carvalho AN de, Czaja R. Global attractors for impulsive dynamical systems: a precompact approach [Internet]. Journal of Differential Equations. 2015 ; 259( 7): 2602-2625.Available from: http://dx.doi.org/10.1016/j.jde.2015.03.033
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Singularidades, Teoria Qualitativa, Equações Diferenciais Ordinárias

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERCEC, Brigita; GINÉ, Jaume; MENCINGER, Matej; OLIVEIRA, Regilene Delazari dos Santos. The center problem for a 1: -4 resonant quadratic system. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 420, n. 2, p. 1568-1591, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.06.060 > DOI: 10.1016/j.jmaa.2014.06.060.
    • APA

      Fercec, B., Giné, J., Mencinger, M., & Oliveira, R. D. dos S. (2014). The center problem for a 1: -4 resonant quadratic system. Journal of Mathematical Analysis and Applications, 420( 2), 1568-1591. doi:10.1016/j.jmaa.2014.06.060
    • NLM

      Fercec B, Giné J, Mencinger M, Oliveira RD dos S. The center problem for a 1: -4 resonant quadratic system [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1568-1591.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.060
    • Vancouver

      Fercec B, Giné J, Mencinger M, Oliveira RD dos S. The center problem for a 1: -4 resonant quadratic system [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1568-1591.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.060
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSA, Eugenio Tommaso; ROSSATO, Rafael Antonio. Multiple solutions for an elliptic system near resonance. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 420, n. 2, p. 1228-1250, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.06.043 > DOI: 10.1016/j.jmaa.2014.06.043.
    • APA

      Massa, E. T., & Rossato, R. A. (2014). Multiple solutions for an elliptic system near resonance. Journal of Mathematical Analysis and Applications, 420( 2), 1228-1250. doi:10.1016/j.jmaa.2014.06.043
    • NLM

      Massa ET, Rossato RA. Multiple solutions for an elliptic system near resonance [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1228-1250.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.043
    • Vancouver

      Massa ET, Rossato RA. Multiple solutions for an elliptic system near resonance [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1228-1250.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.043
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco; SILVA, Paulo Leandro Dattori da; MEZIANI, A. Solvability of a first order differential operator on the two-torus. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 416, n. 1, p. 166-180, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.02.006 > DOI: 10.1016/j.jmaa.2014.02.006.
    • APA

      Bergamasco, A. P., Silva, P. L. D. da, & Meziani, A. (2014). Solvability of a first order differential operator on the two-torus. Journal of Mathematical Analysis and Applications, 416( 1), 166-180. doi:10.1016/j.jmaa.2014.02.006
    • NLM

      Bergamasco AP, Silva PLD da, Meziani A. Solvability of a first order differential operator on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 416( 1): 166-180.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.02.006
    • Vancouver

      Bergamasco AP, Silva PLD da, Meziani A. Solvability of a first order differential operator on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 416( 1): 166-180.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.02.006


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020