Filtros : "ICMC" "Topology and its Applications" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA ALGÉBRICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MAURI, Leandro Vicente e MATTOS, Denise de e SANTOS, Edivaldo Lopes dos. Colored Tverberg theorem with new constraints on the faces. Topology and its Applications, v. 341, n. Ja 2024, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108743. Acesso em: 01 mar. 2024.
    • APA

      Mauri, L. V., Mattos, D. de, & Santos, E. L. dos. (2024). Colored Tverberg theorem with new constraints on the faces. Topology and its Applications, 341( Ja 2024), 1-13. doi:10.1016/j.topol.2023.108743
    • NLM

      Mauri LV, Mattos D de, Santos EL dos. Colored Tverberg theorem with new constraints on the faces [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-13.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2023.108743
    • Vancouver

      Mauri LV, Mattos D de, Santos EL dos. Colored Tverberg theorem with new constraints on the faces [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-13.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2023.108743
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: GEOMETRIA HIPERBÓLICA E ELÍTICA, TOPOLOGIA ALGÉBRICA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOTÓS, Hugo Cattarucci. Orbifolds and orbibundles in complex hyperbolic geometry. Topology and its Applications, v. 341, n. Ja 2024, p. 1-25, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108693. Acesso em: 01 mar. 2024.
    • APA

      Botós, H. C. (2024). Orbifolds and orbibundles in complex hyperbolic geometry. Topology and its Applications, 341( Ja 2024), 1-25. doi:10.1016/j.topol.2023.108693
    • NLM

      Botós HC. Orbifolds and orbibundles in complex hyperbolic geometry [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-25.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2023.108693
    • Vancouver

      Botós HC. Orbifolds and orbibundles in complex hyperbolic geometry [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-25.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2023.108693
  • Source: Topology and its Applications. Unidades: IME, ICMC

    Assunto: ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Gabriel Zanetti Nunes e PINTO, Guilherme Eduardo e ROCHA, Vinicius Oliveira. On totally Lindelöf spaces. Topology and its Applications, v. 341, n. Ja 2024, p. 1-12, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2023.108704. Acesso em: 01 mar. 2024.
    • APA

      Fernandes, G. Z. N., Pinto, G. E., & Rocha, V. O. (2024). On totally Lindelöf spaces. Topology and its Applications, 341( Ja 2024), 1-12. doi:10.1016/j.topol.2023.108704
    • NLM

      Fernandes GZN, Pinto GE, Rocha VO. On totally Lindelöf spaces [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-12.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2023.108704
    • Vancouver

      Fernandes GZN, Pinto GE, Rocha VO. On totally Lindelöf spaces [Internet]. Topology and its Applications. 2024 ; 341( Ja 2024): 1-12.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2023.108704
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de e SANTOS, Edivaldo Lopes dos e SILVA, Nelson Antonio. On the length of cohomology spheres. Topology and its Applications, v. 293, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107569. Acesso em: 01 mar. 2024.
    • APA

      Mattos, D. de, Santos, E. L. dos, & Silva, N. A. (2021). On the length of cohomology spheres. Topology and its Applications, 293, 1-11. doi:10.1016/j.topol.2020.107569
    • NLM

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
    • Vancouver

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e DUZI, Matheus. Topological games of bounded selections. Topology and its Applications, v. 291, p. 1-24, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107449. Acesso em: 01 mar. 2024.
    • APA

      Aurichi, L. F., & Duzi, M. (2021). Topological games of bounded selections. Topology and its Applications, 291, 1-24. doi:10.1016/j.topol.2020.107449
    • NLM

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107449
    • Vancouver

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107449
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KORINMAN, Julien. Unicity for representations of reduced stated skein algebras. Topology and its Applications, v. 293, p. 1-28, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107570. Acesso em: 01 mar. 2024.
    • APA

      Korinman, J. (2021). Unicity for representations of reduced stated skein algebras. Topology and its Applications, 293, 1-28. doi:10.1016/j.topol.2020.107570
    • NLM

      Korinman J. Unicity for representations of reduced stated skein algebras [Internet]. Topology and its Applications. 2021 ; 293 1-28.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107570
    • Vancouver

      Korinman J. Unicity for representations of reduced stated skein algebras [Internet]. Topology and its Applications. 2021 ; 293 1-28.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107570
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: SUPERFÍCIES DE RIEMANN, GRUPOS DE LIE, GRUPOS FUCHSIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANANIN, Alexandre et al. Hyperbolic 2-spheres with cone singularities. Topology and its Applications, v. 272, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107073. Acesso em: 01 mar. 2024.
    • APA

      Ananin, A., Grossi, C. H., Lee, J., & Reis Jr., J. dos. (2020). Hyperbolic 2-spheres with cone singularities. Topology and its Applications, 272, 1-23. doi:10.1016/j.topol.2020.107073
    • NLM

      Ananin A, Grossi CH, Lee J, Reis Jr. J dos. Hyperbolic 2-spheres with cone singularities [Internet]. Topology and its Applications. 2020 ; 272 1-23.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107073
    • Vancouver

      Ananin A, Grossi CH, Lee J, Reis Jr. J dos. Hyperbolic 2-spheres with cone singularities [Internet]. Topology and its Applications. 2020 ; 272 1-23.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2020.107073
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERCADO, Henry Jose Gullo e AURICHI, Leandro Fiorini. Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, v. No 2019, p. 1-11, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.106891. Acesso em: 01 mar. 2024.
    • APA

      Mercado, H. J. G., & Aurichi, L. F. (2019). Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, No 2019, 1-11. doi:10.1016/j.topol.2019.106891
    • NLM

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2019.106891
    • Vancouver

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2019.106891
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TOPOLOGIA CONJUNTÍSTICA, BORNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e MEZABARBA, Renan Maneli. Bornologies and filters applied to selection principles and function spaces. Topology and its Applications, v. 258, p. 187-201, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.12.031. Acesso em: 01 mar. 2024.
    • APA

      Aurichi, L. F., & Mezabarba, R. M. (2019). Bornologies and filters applied to selection principles and function spaces. Topology and its Applications, 258, 187-201. doi:10.1016/j.topol.2017.12.031
    • NLM

      Aurichi LF, Mezabarba RM. Bornologies and filters applied to selection principles and function spaces [Internet]. Topology and its Applications. 2019 ; 258 187-201.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.12.031
    • Vancouver

      Aurichi LF, Mezabarba RM. Bornologies and filters applied to selection principles and function spaces [Internet]. Topology and its Applications. 2019 ; 258 187-201.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.12.031
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e DIAS, Rodrigo Roque. A minicourse on topological games. Topology and its Applications, v. 258, p. 305-335, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.02.057. Acesso em: 01 mar. 2024.
    • APA

      Aurichi, L. F., & Dias, R. R. (2019). A minicourse on topological games. Topology and its Applications, 258, 305-335. doi:10.1016/j.topol.2019.02.057
    • NLM

      Aurichi LF, Dias RR. A minicourse on topological games [Internet]. Topology and its Applications. 2019 ; 258 305-335.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2019.02.057
    • Vancouver

      Aurichi LF, Dias RR. A minicourse on topological games [Internet]. Topology and its Applications. 2019 ; 258 305-335.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2019.02.057
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, GEOMETRIA SIMPLÉTICA, FORMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIRA, F. Assunção de Brito e DOMITRZ, W e WIK ATIQUE, Roberta. Classification of transversal Lagrangian stars. Topology and its Applications, v. 235, p. 352–367, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.022. Acesso em: 01 mar. 2024.
    • APA

      Lira, F. A. de B., Domitrz, W., & Wik Atique, R. (2018). Classification of transversal Lagrangian stars. Topology and its Applications, 235, 352–367. doi:10.1016/j.topol.2017.11.022
    • NLM

      Lira FA de B, Domitrz W, Wik Atique R. Classification of transversal Lagrangian stars [Internet]. Topology and its Applications. 2018 ; 235 352–367.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.022
    • Vancouver

      Lira FA de B, Domitrz W, Wik Atique R. Classification of transversal Lagrangian stars [Internet]. Topology and its Applications. 2018 ; 235 352–367.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.022
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia H e MANOEL, Miriam Garcia. Relative equivariants under compact Lie groups. Topology and its Applications, v. 234, p. 474-487, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.011. Acesso em: 01 mar. 2024.
    • APA

      Baptistelli, P. H., & Manoel, M. G. (2018). Relative equivariants under compact Lie groups. Topology and its Applications, 234, 474-487. doi:10.1016/j.topol.2017.11.011
    • NLM

      Baptistelli PH, Manoel MG. Relative equivariants under compact Lie groups [Internet]. Topology and its Applications. 2018 ; 234 474-487.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.011
    • Vancouver

      Baptistelli PH, Manoel MG. Relative equivariants under compact Lie groups [Internet]. Topology and its Applications. 2018 ; 234 474-487.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.011
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty A. de et al. Lyapunov graphs for circle valued functions. Topology and its Applications, v. 245, p. 62-91, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.06.008. Acesso em: 01 mar. 2024.
    • APA

      Rezende, K. A. de, Ledesma, G. G. E., Manzoli Neto, O., & Vago, G. M. (2018). Lyapunov graphs for circle valued functions. Topology and its Applications, 245, 62-91. doi:10.1016/j.topol.2018.06.008
    • NLM

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
    • Vancouver

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA, GEOMETRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIVIÀ-AUSINA, Carles et al. Real and complex singularities and their applications in geometry and topology [Editorial]. Topology and its Applications. Amsterdam: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.topol.2017.11.009. Acesso em: 01 mar. 2024. , 2018
    • APA

      Bivià-Ausina, C., Damon, J., Manoel, M. G., & Oliveira, R. D. dos S. (2018). Real and complex singularities and their applications in geometry and topology [Editorial]. Topology and its Applications. Amsterdam: Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo. doi:10.1016/j.topol.2017.11.009
    • NLM

      Bivià-Ausina C, Damon J, Manoel MG, Oliveira RD dos S. Real and complex singularities and their applications in geometry and topology [Editorial] [Internet]. Topology and its Applications. 2018 ; 234 A1.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.009
    • Vancouver

      Bivià-Ausina C, Damon J, Manoel MG, Oliveira RD dos S. Real and complex singularities and their applications in geometry and topology [Editorial] [Internet]. Topology and its Applications. 2018 ; 234 A1.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.009
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, DINÂMICA TOPOLÓGICA, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, v. 234, p. 220-237, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.023. Acesso em: 01 mar. 2024.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2018). Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, 234, 220-237. doi:10.1016/j.topol.2017.11.023
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SINHA, R. Oset e WIK ATIQUE, Roberta. New techniques for classification of multigerms. Topology and its Applications, v. 234, p. 311–334, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.031. Acesso em: 01 mar. 2024.
    • APA

      Sinha, R. O., & Wik Atique, R. (2018). New techniques for classification of multigerms. Topology and its Applications, 234, 311–334. doi:10.1016/j.topol.2017.11.031
    • NLM

      Sinha RO, Wik Atique R. New techniques for classification of multigerms [Internet]. Topology and its Applications. 2018 ; 234 311–334.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.031
    • Vancouver

      Sinha RO, Wik Atique R. New techniques for classification of multigerms [Internet]. Topology and its Applications. 2018 ; 234 311–334.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.11.031
  • Source: Topology and its Applications. Conference titles: International Conference on Topology - ICTM. Unidade: ICMC

    Assunto: TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e LARA, Dione A. Relations between a topological game and the 'G IND. 'delta''-diagonal property. Topology and its Applications. Amsterdam: Elsevier. Disponível em: https://doi.org/10.1016/j.topol.2017.02.015. Acesso em: 01 mar. 2024. , 2017
    • APA

      Aurichi, L. F., & Lara, D. A. (2017). Relations between a topological game and the 'G IND. 'delta''-diagonal property. Topology and its Applications. Amsterdam: Elsevier. doi:10.1016/j.topol.2017.02.015
    • NLM

      Aurichi LF, Lara DA. Relations between a topological game and the 'G IND. 'delta''-diagonal property [Internet]. Topology and its Applications. 2017 ; 220 140-145.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.02.015
    • Vancouver

      Aurichi LF, Lara DA. Relations between a topological game and the 'G IND. 'delta''-diagonal property [Internet]. Topology and its Applications. 2017 ; 220 140-145.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2017.02.015
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de et al. Zero sets of equivariant maps from products of spheres to Euclidean spaces. Topology and its Applications, v. 202, p. 7-20, 2016Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2015.12.063. Acesso em: 01 mar. 2024.
    • APA

      Mattos, D. de, Pergher, P. L. Q., Santos, E. L. dos, & Singh, M. (2016). Zero sets of equivariant maps from products of spheres to Euclidean spaces. Topology and its Applications, 202, 7-20. doi:10.1016/j.topol.2015.12.063
    • NLM

      Mattos D de, Pergher PLQ, Santos EL dos, Singh M. Zero sets of equivariant maps from products of spheres to Euclidean spaces [Internet]. Topology and its Applications. 2016 ; 202 7-20.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2015.12.063
    • Vancouver

      Mattos D de, Pergher PLQ, Santos EL dos, Singh M. Zero sets of equivariant maps from products of spheres to Euclidean spaces [Internet]. Topology and its Applications. 2016 ; 202 7-20.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2015.12.063
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e BELLA, Angelo. On a game theoretic cardinality bound. Topology and its Applications, v. 192, p. Se 2015, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2015.05.068. Acesso em: 01 mar. 2024.
    • APA

      Aurichi, L. F., & Bella, A. (2015). On a game theoretic cardinality bound. Topology and its Applications, 192, Se 2015. doi:10.1016/j.topol.2015.05.068
    • NLM

      Aurichi LF, Bella A. On a game theoretic cardinality bound [Internet]. Topology and its Applications. 2015 ; 192 Se 2015.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2015.05.068
    • Vancouver

      Aurichi LF, Bella A. On a game theoretic cardinality bound [Internet]. Topology and its Applications. 2015 ; 192 Se 2015.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2015.05.068
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e BELLA, Angelo. Topological games and productively countably tight spaces. Topology and its Applications, v. 171, p. 7-14, 2014Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2014.04.007. Acesso em: 01 mar. 2024.
    • APA

      Aurichi, L. F., & Bella, A. (2014). Topological games and productively countably tight spaces. Topology and its Applications, 171, 7-14. doi:10.1016/j.topol.2014.04.007
    • NLM

      Aurichi LF, Bella A. Topological games and productively countably tight spaces [Internet]. Topology and its Applications. 2014 ; 171 7-14.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2014.04.007
    • Vancouver

      Aurichi LF, Bella A. Topological games and productively countably tight spaces [Internet]. Topology and its Applications. 2014 ; 171 7-14.[citado 2024 mar. 01 ] Available from: https://doi.org/10.1016/j.topol.2014.04.007

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024