Filters : "ICMC" "Topological Methods in Nonlinear Analysis" Limpar

Filters



Refine with date range


  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Estabilidade De Liapunov, Equações Impulsivas, Estabilidade

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; SOUTO, Ginnara M. On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, Torun, PL, Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University, v. 53, n. 1, p. 127-150, 2019. Disponível em: < http://dx.doi.org/10.12775/TMNA.2018.042 > DOI: 10.12775/TMNA.2018.042.
    • APA

      Bonotto, E. de M., & Souto, G. M. (2019). On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, 53( 1), 127-150. doi:10.12775/TMNA.2018.042
    • NLM

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.Available from: http://dx.doi.org/10.12775/TMNA.2018.042
    • Vancouver

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.Available from: http://dx.doi.org/10.12775/TMNA.2018.042
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais Parabólicas, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; PIRES, Leonardo. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 53, n. 1, p. 1-23, 2019. Disponível em: < http://dx.doi.org/10.12775/TMNA.2018.048 > DOI: 10.12775/TMNA.2018.048.
    • APA

      Carvalho, A. N. de, & Pires, L. (2019). Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53( 1), 1-23. doi:10.12775/TMNA.2018.048
    • NLM

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.Available from: http://dx.doi.org/10.12775/TMNA.2018.048
    • Vancouver

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.Available from: http://dx.doi.org/10.12775/TMNA.2018.048
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Teoria Do índice, Topologia Dinâmica, Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 54, n. 1, p. Se 2019, 2019. Disponível em: < https://doi.org/10.12775/TMNA.2019.023 > DOI: 10.12775/TMNA.2019.023.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.Available from: https://doi.org/10.12775/TMNA.2019.023
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Topologia Algébrica

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S; MANZOLI NETO, Oziride; REZENDE, Ketty A. de; SILVEIRA, Mariana R. da. Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 51, n. 1, p. 259-311, 2018. Disponível em: < http://dx.doi.org/10.12775/TMNA.2017.047 > DOI: 10.12775/TMNA.2017.047.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., Rezende, K. A. de, & Silveira, M. R. da. (2018). Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, 51( 1), 259-311. doi:10.12775/TMNA.2017.047
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.Available from: http://dx.doi.org/10.12775/TMNA.2017.047
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.Available from: http://dx.doi.org/10.12775/TMNA.2017.047
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Teoria Ergódica, Topologia Diferencial, Teoria Das Singularidades

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José; MEZA-SARMIENTO, Ingrid S; OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center, v. 51, n. 1, p. 183-213, 2018. Disponível em: < http://dx.doi.org/10.12775/TMNA.2017.051 > DOI: 10.12775/TMNA.2017.051.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.Available from: http://dx.doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.Available from: http://dx.doi.org/10.12775/TMNA.2017.051
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais Parabólicas, Teoria Espectral, Teoria Do índice

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 52, n. 2, p. 631-664, 2018. Disponível em: < http://dx.doi.org/10.12775/TMNA.2018.025 > DOI: 10.12775/TMNA.2018.025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.Available from: http://dx.doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.Available from: http://dx.doi.org/10.12775/TMNA.2018.025
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Equações Diferenciais Parciais Parabólicas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center, v. 50, n. 2, p. 741-755, 2017. Disponível em: < http://dx.doi.org/10.12775/TMNA.2017.043 > DOI: 10.12775/TMNA.2017.043.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2017). A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 50( 2), 741-755. doi:10.12775/TMNA.2017.043
    • NLM

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.Available from: http://dx.doi.org/10.12775/TMNA.2017.043
    • Vancouver

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.Available from: http://dx.doi.org/10.12775/TMNA.2017.043
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Equações Impulsivas, Estabilidade

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; GIMENES, Luciene P.; SOUTO, Ginnara M. Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, Torun, PL, Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University, v. 49, n. 1, p. 133-163, 2017. Disponível em: < http://dx.doi.org/10.12775/TMNA.2016.065 > DOI: 10.12775/TMNA.2016.065.
    • APA

      Bonotto, E. de M., Gimenes, L. P., & Souto, G. M. (2017). Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, 49( 1), 133-163. doi:10.12775/TMNA.2016.065
    • NLM

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.Available from: http://dx.doi.org/10.12775/TMNA.2016.065
    • Vancouver

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.Available from: http://dx.doi.org/10.12775/TMNA.2016.065
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Equações Não Lineares, Equações Diferenciais Parciais Parabólicas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de; CARVALHO, Alexandre Nolasco de; CARVALHO-NETO, Paulo M; MARÍN-RUBIO, Pedro. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 45, n. 2, p. 439-467, 2015. Disponível em: < http://projecteuclid.org/euclid.tmna/1459343991 > DOI: 10.12775/tmna.2015.022.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.Available from: http://projecteuclid.org/euclid.tmna/1459343991
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.Available from: http://projecteuclid.org/euclid.tmna/1459343991
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Sistemas Dinâmicos, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C; CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 46, n. 2, p. 563-602, 2015. Disponível em: < http://projecteuclid.org/euclid.tmna/1458588652 > DOI: 10.12775/tmna.2015.059.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.Available from: http://projecteuclid.org/euclid.tmna/1458588652
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.Available from: http://projecteuclid.org/euclid.tmna/1458588652
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Equação De Schrodinger, Geometria Algébrica

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor O; NEMER, Rodrigo C. M; SOARES, Sérgio Henrique Monari. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 46, n. 1, p. 329-362, 2015. DOI: 10.12775/tmna.2015.050.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2015). Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, 46( 1), 329-362. doi:10.12775/tmna.2015.050
    • NLM

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Equações Diferenciais Parciais Elíticas

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira; SANTOS, Ederson Moreira dos. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 45, n. 2, p. 551-574, 2015. DOI: 10.12775/tmna.2015.026.
    • APA

      Melo, J. L. F., & Santos, E. M. dos. (2015). A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, 45( 2), 551-574. doi:10.12775/tmna.2015.026
    • NLM

      Melo JLF, Santos EM dos. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.
    • Vancouver

      Melo JLF, Santos EM dos. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Equações Impulsivas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; JIMENEZ, Manuel Francisco Zuloeta. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 44, n. 1, p. 121-141, 2014. Disponível em: < https://projecteuclid.org/euclid.tmna/1460381473 > DOI: 10.12775/tmna.2014.039.
    • APA

      Bonotto, E. de M., & Jimenez, M. F. Z. (2014). On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, 44( 1), 121-141. doi:10.12775/tmna.2014.039
    • NLM

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.Available from: https://projecteuclid.org/euclid.tmna/1460381473
    • Vancouver

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.Available from: https://projecteuclid.org/euclid.tmna/1460381473
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 42, n. 2, p. 233-256, 2013.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Equações Impulsivas, Sistemas Dissipativo

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; DEMUNER, Daniela P. Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 41, n. 1, p. 1-38, 2013. Disponível em: < https://projecteuclid.org/euclid.tmna/1461253854 >.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2013). Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, 41( 1), 1-38. Recuperado de https://projecteuclid.org/euclid.tmna/1461253854
    • NLM

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.Available from: https://projecteuclid.org/euclid.tmna/1461253854
    • Vancouver

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.Available from: https://projecteuclid.org/euclid.tmna/1461253854
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Singularidades, Topologia

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos; MONIS, Thaís Fernanda Mendes. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 41, n. 2, p. 409-419, 2013.
    • APA

      Biasi, C., & Monis, T. F. M. (2013). Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, 41( 2), 409-419.
    • NLM

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.
    • Vancouver

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M; BEZERRA, Flank D. M; CARVALHO, Alexandre Nolasco de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 41, n. 2, p. 229-253, 2013.
    • APA

      Arrieta, J. M., Bezerra, F. D. M., & Carvalho, A. N. de. (2013). Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, 41( 2), 229-253.
    • NLM

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.
    • Vancouver

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis; CARVALHO, Alexandre Nolasco de; MARÍN-RUBIO, Pedro; PLANAS, Gabriela. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 42, n. 2, p. 345-376, 2013.
    • APA

      Aragão-Costa, É. R., Carvalho, A. N. de, Marín-Rubio, P., & Planas, G. (2013). Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, 42( 2), 345-376.
    • NLM

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.
    • Vancouver

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder R; CARABALLO, Tomás; CARVALHO, Alexandre Nolasco de; LANGA, José A. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 39, n. 1, p. 57-82, 2012.
    • APA

      Aragão-Costa, É. R., Caraballo, T., Carvalho, A. N. de, & Langa, J. A. (2012). Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, 39( 1), 57-82.
    • NLM

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.
    • Vancouver

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 40, n. 1, p. 1-28, 2012.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2012). On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, 40( 1), 1-28.
    • NLM

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020