Filters : "ICMC" "Journal of Mathematical Analysis and Applications" Limpar

Filters



Refine with date range


  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Problemas De Valores Iniciais, Espaços De Frechet, Operadores Lineares, Operadores Pseudodiferenciais, Análise Harmônica Em Espaços Euclidianos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis; SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, San Diego, Academic Press, v. 484, n. 2, p. 1-15, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2019.123612 > DOI: 10.1016/j.jmaa.2019.123612.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Métodos Variacionais, Operadores Elíticos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARCOYA, David; PAIVA, Francisco Odair de; MENDOZA, Jose Miguel. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, San Diego, Academic Press, v. 480, n. 2, p. 1-12, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123401 > DOI: 10.1016/j.jmaa.2019.123401.
    • APA

      Arcoya, D., Paiva, F. O. de, & Mendoza, J. M. (2019). Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, 480( 2), 1-12. doi:10.1016/j.jmaa.2019.123401
    • NLM

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
    • Vancouver

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Teoremas Limites, Cadeias De Markov

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREJO, Carolina Bueno; RODRÍGUEZ, Pablo Martín. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, Maryland Heights, Academic Press, v. 480, p. 1-10, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123402 > DOI: 10.1016/j.jmaa.2019.123402.
    • APA

      Grejo, C. B., & Rodríguez, P. M. (2019). Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, 480, 1-10. doi:10.1016/j.jmaa.2019.123402
    • NLM

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
    • Vancouver

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Teoria Qualitativa, Equações Diferenciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Wilker; OLIVEIRA, Regilene Delazari dos Santos; ROMANOVSKI, Valery G. Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. No 2018, n. 2, p. 874-892, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.07.053 > DOI: 10.1016/j.jmaa.2018.07.053.
    • APA

      Fernandes, W., Oliveira, R. D. dos S., & Romanovski, V. G. (2018). Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, No 2018( 2), 874-892. doi:10.1016/j.jmaa.2018.07.053
    • NLM

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
    • Vancouver

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Equações Diferenciais, Equação De Schrodinger

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank D. M; CARVALHO, Alexandre Nolasco de; DLOTKO, Tomasz; NASCIMENTO, Marcelo J. D. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 457, n. Ja 2018, p. 336-360, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.08.014 > DOI: 10.1016/j.jmaa.2017.08.014.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Espaços De Besov, Operadores Lineares

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 465, n. 1, p. Se 2018, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.04.077 > DOI: 10.1016/j.jmaa.2018.04.077.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, 465( 1), Se 2018. doi:10.1016/j.jmaa.2018.04.077
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 452, n. 1, p. 258-296, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.03.008 > DOI: 10.1016/j.jmaa.2017.03.008.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Equações Diferenciais Parciais, Equações Da Onda, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M; CARVALHO, Alexandre Nolasco de; CHOLEWA, J. W; NASCIMENTO, M. J. D. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 450, n. 1, p. 377-405, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.01.024 > DOI: 10.1016/j.jmaa.2017.01.024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Análise Funcional, Espaços Homogêneos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, V. S; MENEGATTO, Valdir Antônio. Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 434, n. 1, p. 698-712, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2015.09.040 > DOI: 10.1016/j.jmaa.2015.09.040.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2016). Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 434( 1), 698-712. doi:10.1016/j.jmaa.2015.09.040
    • NLM

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.09.040
    • Vancouver

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.09.040
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C; MENEGATTO, Valdir Antônio. Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 435, n. 1, p. 286-301, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2015.10.026 > DOI: 10.1016/j.jmaa.2015.10.026.
    • APA

      Guella, J. C., & Menegatto, V. A. (2016). Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, 435( 1), 286-301. doi:10.1016/j.jmaa.2015.10.026
    • NLM

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.10.026
    • Vancouver

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.10.026
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Análise Global

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco; MEDEIRA, Cleber de; KIRILOV, Alexandre; ZANI, Sérgio Luís. On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 444, n. 1, p. 527-549, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2016.06.045 > DOI: 10.1016/j.jmaa.2016.06.045.
    • APA

      Bergamasco, A. P., Medeira, C. de, Kirilov, A., & Zani, S. L. (2016). On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, 444( 1), 527-549. doi:10.1016/j.jmaa.2016.06.045
    • NLM

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.045
    • Vancouver

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.045
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Geometria Simplética, Geometria Diferencial

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAIZER, Marcos; DOMITRZ, Wojciech; RIOS, Pedro Paulo de Magalhães. Even dimensional improper affine spheres. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 421, n. ja 2015, p. 1803-1826, 2015. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.08.028 > DOI: 10.1016/j.jmaa.2014.08.028.
    • APA

      Craizer, M., Domitrz, W., & Rios, P. P. de M. (2015). Even dimensional improper affine spheres. Journal of Mathematical Analysis and Applications, 421( ja 2015), 1803-1826. doi:10.1016/j.jmaa.2014.08.028
    • NLM

      Craizer M, Domitrz W, Rios PP de M. Even dimensional improper affine spheres [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 421( ja 2015): 1803-1826.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.08.028
    • Vancouver

      Craizer M, Domitrz W, Rios PP de M. Even dimensional improper affine spheres [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 421( ja 2015): 1803-1826.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.08.028
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Jefferson A; SOARES, Sérgio Henrique Monari. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 428, n. 2, p. 1035-1053, 2015. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2015.03.030 > DOI: 10.1016/j.jmaa.2015.03.030.
    • APA

      Santos, J. A., & Soares, S. H. M. (2015). Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces. Journal of Mathematical Analysis and Applications, 428( 2), 1035-1053. doi:10.1016/j.jmaa.2015.03.030
    • NLM

      Santos JA, Soares SHM. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 2): 1035-1053.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.03.030
    • Vancouver

      Santos JA, Soares SHM. Radial solutions of quasilinear equations in Orlicz-Sobolev type spaces [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 428( 2): 1035-1053.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.03.030
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITURRIAGA, Leonelo; SANTOS, Ederson Moreira dos; UBILLA, Pedro. Local minimizers in spaces of symmetric functions and applications. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 429, n. 1, p. 27–56, 2015. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2015.03.084 > DOI: 10.1016/j.jmaa.2015.03.084.
    • APA

      Iturriaga, L., Santos, E. M. dos, & Ubilla, P. (2015). Local minimizers in spaces of symmetric functions and applications. Journal of Mathematical Analysis and Applications, 429( 1), 27–56. doi:10.1016/j.jmaa.2015.03.084
    • NLM

      Iturriaga L, Santos EM dos, Ubilla P. Local minimizers in spaces of symmetric functions and applications [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 1): 27–56.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.03.084
    • Vancouver

      Iturriaga L, Santos EM dos, Ubilla P. Local minimizers in spaces of symmetric functions and applications [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 429( 1): 27–56.Available from: http://dx.doi.org/10.1016/j.jmaa.2015.03.084
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Geometria Diferencial

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando; VITÓRIO, Feliciano. Minimal immersions of Riemannian manifolds in products of space forms. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 424, n. 1, p. 260-268, 2015. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.11.013 > DOI: 10.1016/j.jmaa.2014.11.013.
    • APA

      Manfio, F., & Vitório, F. (2015). Minimal immersions of Riemannian manifolds in products of space forms. Journal of Mathematical Analysis and Applications, 424( 1), 260-268. doi:10.1016/j.jmaa.2014.11.013
    • NLM

      Manfio F, Vitório F. Minimal immersions of Riemannian manifolds in products of space forms [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 424( 1): 260-268.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.11.013
    • Vancouver

      Manfio F, Vitório F. Minimal immersions of Riemannian manifolds in products of space forms [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 424( 1): 260-268.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.11.013
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Mecânica Dos Fluídos Computacional, Análise Numérica, Escoamento Multifásico

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MCKEE, S.; CUMINATO, José Alberto. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, Amsterdam, Elsevier, v. 423, n. 1, p. 243-252, 2015. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.09.067 > DOI: 10.1016/j.jmaa.2014.09.067.
    • APA

      McKee, S., & Cuminato, J. A. (2015). Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation. Journal of Mathematical Analysis and Applications, 423( 1), 243-252. doi:10.1016/j.jmaa.2014.09.067
    • NLM

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.09.067
    • Vancouver

      McKee S, Cuminato JA. Nonlocal diffusion, a Mittag: leffler function and a two-dimensional Volterra integral equation [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 423( 1): 243-252.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.09.067
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Singularidades, Teoria Qualitativa, Equações Diferenciais Ordinárias

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERCEC, Brigita; GINÉ, Jaume; MENCINGER, Matej; OLIVEIRA, Regilene Delazari dos Santos. The center problem for a 1: -4 resonant quadratic system. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 420, n. 2, p. 1568-1591, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.06.060 > DOI: 10.1016/j.jmaa.2014.06.060.
    • APA

      Fercec, B., Giné, J., Mencinger, M., & Oliveira, R. D. dos S. (2014). The center problem for a 1: -4 resonant quadratic system. Journal of Mathematical Analysis and Applications, 420( 2), 1568-1591. doi:10.1016/j.jmaa.2014.06.060
    • NLM

      Fercec B, Giné J, Mencinger M, Oliveira RD dos S. The center problem for a 1: -4 resonant quadratic system [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1568-1591.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.060
    • Vancouver

      Fercec B, Giné J, Mencinger M, Oliveira RD dos S. The center problem for a 1: -4 resonant quadratic system [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1568-1591.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.060
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Pontes, Equações Diferenciais, Método Dos Elementos Finitos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, M. A. Jorge; MA, To Fu; RIVERA, J. E. Muñoz. Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 417, n. 1, p. 164-179, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.02.066 > DOI: 10.1016/j.jmaa.2014.02.066.
    • APA

      Silva, M. A. J., Ma, T. F., & Rivera, J. E. M. (2014). Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates. Journal of Mathematical Analysis and Applications, 417( 1), 164-179. doi:10.1016/j.jmaa.2014.02.066
    • NLM

      Silva MAJ, Ma TF, Rivera JEM. Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 417( 1): 164-179.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.02.066
    • Vancouver

      Silva MAJ, Ma TF, Rivera JEM. Mindlin-Timoshenko systems with Kelvin-Voigt: analyticity and optimal decay rates [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 417( 1): 164-179.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.02.066
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Alisson Rafael Aguiar; MA, To Fu. Long-time dynamics of an extensible plate equation with thermal memory. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 416, n. 1, p. 143-165, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.02.042 > DOI: 10.1016/j.jmaa.2014.02.042.
    • APA

      Barbosa, A. R. A., & Ma, T. F. (2014). Long-time dynamics of an extensible plate equation with thermal memory. Journal of Mathematical Analysis and Applications, 416( 1), 143-165. doi:10.1016/j.jmaa.2014.02.042
    • NLM

      Barbosa ARA, Ma TF. Long-time dynamics of an extensible plate equation with thermal memory [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 416( 1): 143-165.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.02.042
    • Vancouver

      Barbosa ARA, Ma TF. Long-time dynamics of an extensible plate equation with thermal memory [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 416( 1): 143-165.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.02.042
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSA, Eugenio Tommaso; ROSSATO, Rafael Antonio. Multiple solutions for an elliptic system near resonance. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 420, n. 2, p. 1228-1250, 2014. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2014.06.043 > DOI: 10.1016/j.jmaa.2014.06.043.
    • APA

      Massa, E. T., & Rossato, R. A. (2014). Multiple solutions for an elliptic system near resonance. Journal of Mathematical Analysis and Applications, 420( 2), 1228-1250. doi:10.1016/j.jmaa.2014.06.043
    • NLM

      Massa ET, Rossato RA. Multiple solutions for an elliptic system near resonance [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1228-1250.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.043
    • Vancouver

      Massa ET, Rossato RA. Multiple solutions for an elliptic system near resonance [Internet]. Journal of Mathematical Analysis and Applications. 2014 ; 420( 2): 1228-1250.Available from: http://dx.doi.org/10.1016/j.jmaa.2014.06.043


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020