Filters : "ICMC" "Journal of Mathematical Analysis and Applications" Limpar

Filters



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 28 nov. 2022.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 28 nov. 2022.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Available on 2024-04-01Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 28 nov. 2022.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS, POLINÔMIOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões et al. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, v. 516, n. 1, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2022.126487. Acesso em: 28 nov. 2022.
    • APA

      Barbosa, V. S., Gregori, P., Peron, A. P., & Porcu, E. (2022). Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 516( 1), 1-26. doi:10.1016/j.jmaa.2022.126487
    • NLM

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
    • Vancouver

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Available on 2023-09-01Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 28 nov. 2022.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS HIPERBÓLICOS, VALORES PRÓPRIOS, VARIEDADES MÍNIMAS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124759. Acesso em: 28 nov. 2022.
    • APA

      Bezerra, A. C., & Manfio, F. (2021). Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, 495( 2), 1-10. doi:10.1016/j.jmaa.2020.124759
    • NLM

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
    • Vancouver

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Paulo Leandro Dattori da e GONZALEZ, Rafael Borro e SILVA, Marcio A. Jorge. Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, v. 492, n. 2, p. 1-36, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124467. Acesso em: 28 nov. 2022.
    • APA

      Silva, P. L. D. da, Gonzalez, R. B., & Silva, M. A. J. (2020). Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, 492( 2), 1-36. doi:10.1016/j.jmaa.2020.124467
    • NLM

      Silva PLD da, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
    • Vancouver

      Silva PLD da, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SIMETRIA, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes e LABOURIAU, Isabel Salgado e MANOEL, Miriam Garcia. Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, v. No 2020, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124348. Acesso em: 28 nov. 2022.
    • APA

      Baptistelli, P. H., Labouriau, I. S., & Manoel, M. G. (2020). Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, No 2020( 2), 1-15. doi:10.1016/j.jmaa.2020.124348
    • NLM

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
    • Vancouver

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis e SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, v. 484, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123612. Acesso em: 28 nov. 2022.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2022 nov. 28 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: MÉTODOS VARIACIONAIS, OPERADORES ELÍTICOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARCOYA, David e PAIVA, Francisco Odair de e MENDOZA, Jose Miguel. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, v. 480, n. 2, p. 1-12, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2019.123401. Acesso em: 28 nov. 2022.
    • APA

      Arcoya, D., Paiva, F. O. de, & Mendoza, J. M. (2019). Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, 480( 2), 1-12. doi:10.1016/j.jmaa.2019.123401
    • NLM

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
    • Vancouver

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEOREMAS LIMITES, CADEIAS DE MARKOV

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREJO, Carolina Bueno e RODRÍGUEZ, Pablo Martín. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, v. 480, p. 1-10, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2019.123402. Acesso em: 28 nov. 2022.
    • APA

      Grejo, C. B., & Rodríguez, P. M. (2019). Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, 480, 1-10. doi:10.1016/j.jmaa.2019.123402
    • NLM

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
    • Vancouver

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Wilker e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, v. No 2018, n. 2, p. 874-892, 2018Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2018.07.053. Acesso em: 28 nov. 2022.
    • APA

      Fernandes, W., Oliveira, R. D. dos S., & Romanovski, V. G. (2018). Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, No 2018( 2), 874-892. doi:10.1016/j.jmaa.2018.07.053
    • NLM

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
    • Vancouver

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, EQUAÇÃO DE SCHRODINGER

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank D. M et al. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, v. 457, n. Ja 2018, p. 336-360, 2018Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2017.08.014. Acesso em: 28 nov. 2022.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES LINEARES

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, v. 465, n. 1, p. Se 2018, 2018Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2018.04.077. Acesso em: 28 nov. 2022.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, 465( 1), Se 2018. doi:10.1016/j.jmaa.2018.04.077
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, v. 452, n. 1, p. 258-296, 2017Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2017.03.008. Acesso em: 28 nov. 2022.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 377-405, 2017Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2017.01.024. Acesso em: 28 nov. 2022.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subject: ANÁLISE FUNCIONAL

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELLA, J. C e MENEGATTO, Valdir Antônio. Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, v. 435, n. 1, p. 286-301, 2016Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2015.10.026. Acesso em: 28 nov. 2022.
    • APA

      Guella, J. C., & Menegatto, V. A. (2016). Strictly positive definite kernels on a product of spheres. Journal of Mathematical Analysis and Applications, 435( 1), 286-301. doi:10.1016/j.jmaa.2015.10.026
    • NLM

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2015.10.026
    • Vancouver

      Guella JC, Menegatto VA. Strictly positive definite kernels on a product of spheres [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 435( 1): 286-301.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2015.10.026
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, V. S e MENEGATTO, Valdir Antônio. Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, v. 434, n. 1, p. 698-712, 2016Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2015.09.040. Acesso em: 28 nov. 2022.
    • APA

      Barbosa, V. S., & Menegatto, V. A. (2016). Differentiable positive definite functions on two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 434( 1), 698-712. doi:10.1016/j.jmaa.2015.09.040
    • NLM

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2015.09.040
    • Vancouver

      Barbosa VS, Menegatto VA. Differentiable positive definite functions on two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 434( 1): 698-712.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2015.09.040
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco et al. On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, v. 444, n. 1, p. 527-549, 2016Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2016.06.045. Acesso em: 28 nov. 2022.
    • APA

      Bergamasco, A. P., Medeira, C. de, Kirilov, A., & Zani, S. L. (2016). On the global solvability of involutive systems. Journal of Mathematical Analysis and Applications, 444( 1), 527-549. doi:10.1016/j.jmaa.2016.06.045
    • NLM

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.045
    • Vancouver

      Bergamasco AP, Medeira C de, Kirilov A, Zani SL. On the global solvability of involutive systems [Internet]. Journal of Mathematical Analysis and Applications. 2016 ; 444( 1): 527-549.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2016.06.045
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA SIMPLÉTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAIZER, Marcos e DOMITRZ, Wojciech e RIOS, Pedro Paulo de Magalhães. Even dimensional improper affine spheres. Journal of Mathematical Analysis and Applications, v. 421, n. ja 2015, p. 1803-1826, 2015Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2014.08.028. Acesso em: 28 nov. 2022.
    • APA

      Craizer, M., Domitrz, W., & Rios, P. P. de M. (2015). Even dimensional improper affine spheres. Journal of Mathematical Analysis and Applications, 421( ja 2015), 1803-1826. doi:10.1016/j.jmaa.2014.08.028
    • NLM

      Craizer M, Domitrz W, Rios PP de M. Even dimensional improper affine spheres [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 421( ja 2015): 1803-1826.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2014.08.028
    • Vancouver

      Craizer M, Domitrz W, Rios PP de M. Even dimensional improper affine spheres [Internet]. Journal of Mathematical Analysis and Applications. 2015 ; 421( ja 2015): 1803-1826.[citado 2022 nov. 28 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2014.08.028

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022