Filtros : "ICMC" "Journal of Dynamics and Differential Equations" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, ELASTICIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCANEGRA-RODRÍGUEZ, Lito Edinson et al. Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, v. 35, n. 2, p. 1435-1456, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09955-7. Acesso em: 29 set. 2023.
    • APA

      Bocanegra-Rodríguez, L. E., Silva, M. A. J. da, Ma, T. F., & Seminario-Huertas, P. N. (2023). Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, 35( 2), 1435-1456. doi:10.1007/s10884-021-09955-7
    • NLM

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
    • Vancouver

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2023 ; 35( 2): 1435-1456.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-021-09955-7
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 29 set. 2023.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BANAṤKIEWICZ, Jakub et al. Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-022-10239-x. Acesso em: 29 set. 2023.
    • APA

      Banaṥkiewicz, J., Carvalho, A. N. de, Garcia-Fuentes, J., & Kalita, P. (2022). Autonomous and non-autonomous unbounded attractors in evolutionary problems. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-022-10239-x
    • NLM

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2022 ;[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
    • Vancouver

      Banaṥkiewicz J, Carvalho AN de, Garcia-Fuentes J, Kalita P. Autonomous and non-autonomous unbounded attractors in evolutionary problems [Internet]. Journal of Dynamics and Differential Equations. 2022 ;[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-022-10239-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ROBUSTEZ, DIMENSÃO INFINITA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e CARABALLO, Tomás e NAKASSIMA, Guilherme Kenji. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, v. 34, p. 2841-2865, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09854-3. Acesso em: 29 set. 2023.
    • APA

      Rodrigues, H. M., Caraballo, T., & Nakassima, G. K. (2022). Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, 34, 2841-2865. Recuperado de https://doi.org/10.1007/s10884-020-09854-3
    • NLM

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
    • Vancouver

      Rodrigues HM, Caraballo T, Nakassima GK. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34 2841-2865.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-020-09854-3
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, v. 33, n. 4, p. 1779-1821, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09871-2. Acesso em: 29 set. 2023.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, 33( 4), 1779-1821. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, v. 33, p. 463-487, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09815-5. Acesso em: 29 set. 2023.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DIMENSÃO INFINITA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-09962-8. Acesso em: 29 set. 2023.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2021). A new example on Lyapunov stability. Journal of Dynamics and Differential Equations. doi:0.1007/s10884-021-09962-8
    • NLM

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
    • Vancouver

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2021 ;[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-021-09962-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz et al. A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, v. 32, n. 2, p. 605-614, 2020Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-019-09750-5. Acesso em: 29 set. 2023.
    • APA

      Federson, M. C. A. B., Györi, I., Mesquita, J. G., & Taboas, P. Z. (2020). A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, 32( 2), 605-614. doi:10.1007/s10884-019-09750-5
    • NLM

      Federson MCAB, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-019-09750-5
    • Vancouver

      Federson MCAB, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-019-09750-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE SISTEMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Márcia Cristina Anderson Braz e SANTOS, Fabio L. Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, v. 32, p. 2021-2060, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09801-x. Acesso em: 29 set. 2023.
    • APA

      Bonotto, E. de M., Federson, M. C. A. B., & Santos, F. L. (2020). Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, 32, 2021-2060. doi:10.1007/s10884-019-09801-x
    • NLM

      Bonotto E de M, Federson MCAB, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
    • Vancouver

      Bonotto E de M, Federson MCAB, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09801-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes e SILVA, Marcio A. Jorge e NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, v. 32, n. 3, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09766-x. Acesso em: 29 set. 2023.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, v. 32, n. 1, p. 359-390, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10884-019-09728-3. Acesso em: 29 set. 2023.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-018-9720-9
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09728-3
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.[citado 2023 set. 29 ] Available from: https://doi.org/10.1007/s10884-019-09728-3
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz et al. Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, v. 31, n. 1, p. 207-236, 2019Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-018-9682-y. Acesso em: 29 set. 2023.
    • APA

      Federson, M. C. A. B., Frasson, M. V. S., Mesquita, J. G., & Tacuri, P. H. (2019). Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, 31( 1), 207-236. doi:10.1007/s10884-018-9682-y
    • NLM

      Federson MCAB, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-018-9682-y
    • Vancouver

      Federson MCAB, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-018-9682-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENG, B et al. Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, v. 30, n. 4, p. 1489-1507, 2018Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-017-9604-4. Acesso em: 29 set. 2023.
    • APA

      Feng, B., Ma, T. F., Monteiro, R. N., & Raposo, C. A. (2018). Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, 30( 4), 1489-1507. doi:10.1007/s10884-017-9604-4
    • NLM

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-017-9604-4
    • Vancouver

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-017-9604-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e TEIXEIRA, Marco A. e GAMEIRO, Márcio Fuzeto. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, v. 30, n. 3, p. 1199-1219, 2018Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-017-9598-y. Acesso em: 29 set. 2023.
    • APA

      Rodrigues, H. M., Teixeira, M. A., & Gameiro, M. F. (2018). On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, 30( 3), 1199-1219. doi:10.1007/s10884-017-9598-y
    • NLM

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-017-9598-y
    • Vancouver

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-017-9598-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis et al. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, v. 30, n. 2, p. 687-718, 2018Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-016-9567-x. Acesso em: 29 set. 2023.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-016-9567-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRANDÃO, Daniel Smania e VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, v. 30, n. 1, p. 227-255, 2018Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-016-9539-1. Acesso em: 29 set. 2023.
    • APA

      Brandão, D. S., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Brandão DS, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Brandão DS, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-016-9539-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e OLIVEIRA, Regilene Delazari dos Santos e ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, v. 29, n. Ju 2017, p. 597-613, 2017Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-015-9486-2. Acesso em: 29 set. 2023.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-015-9486-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M et al. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, v. 24, n. 3, p. 427-481, 2012Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-012-9269-y. Acesso em: 29 set. 2023.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-012-9269-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, v. 22, n. 3, p. 473-489, 2010Tradução . . Disponível em: http://dx.doi.org/10.1007/s10884-010-9160-7. Acesso em: 29 set. 2023.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2010). On the Hartman-Grobman theorem with parameters. Journal of Dynamics and Differential Equations, 22( 3), 473-489. doi:10.1007/s10884-010-9160-7
    • NLM

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-010-9160-7
    • Vancouver

      Rodrigues HM, Sola-Morales J. On the Hartman-Grobman theorem with parameters [Internet]. Journal of Dynamics and Differential Equations. 2010 ; 22( 3): 473-489.[citado 2023 set. 29 ] Available from: http://dx.doi.org/10.1007/s10884-010-9160-7
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini et al. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, v. 18, n. 3, p. 767-814, 2006Tradução . . Disponível em: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf. Acesso em: 29 set. 2023.
    • APA

      Bruschi, S. M., Cholewa, J. W., Carvalho, A. N. de, & Dlotko, T. (2006). Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations. Journal of Dynamics and Differential Equations, 18( 3), 767-814. Recuperado de http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • NLM

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2023 set. 29 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf
    • Vancouver

      Bruschi SM, Cholewa JW, Carvalho AN de, Dlotko T. Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations [Internet]. Journal of Dynamics and Differential Equations. 2006 ; 18( 3): 767-814.[citado 2023 set. 29 ] Available from: http://www.springerlink.com.w10077.dotlib.com.br/content/08872646h4546298/fulltext.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2023