Filters : "ICMC" "Journal of Differential Equations" Limpar

Filters



Refine with date range


  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Sistemas Discretos, Sistemas Dinâmicos, Operadores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz; SOLA-MORALES, Joan. An example on Lyapunov stability and linearization. Journal of Differential Equations, Maryland Heights, Elsevier, v. 269, p. 1349-1359, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.01.027 > DOI: 10.1016/j.jde.2020.01.027.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2020). An example on Lyapunov stability and linearization. Journal of Differential Equations, 269, 1349-1359. doi:10.1016/j.jde.2020.01.027
    • NLM

      Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.Available from: https://doi.org/10.1016/j.jde.2020.01.027
    • Vancouver

      Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.Available from: https://doi.org/10.1016/j.jde.2020.01.027
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Métodos Variacionais, Equações Diferenciais Parciais Elíticas De 2ª Ordem

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITURRIAGA, Leonelo; MASSA, Eugenio Tommaso. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems. Journal of Differential Equations, San Diego, Academic Press, v. 269, n. 5, p. 4381-4405, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.03.031 > DOI: 10.1016/j.jde.2020.03.031.
    • APA

      Iturriaga, L., & Massa, E. T. (2020). Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems. Journal of Differential Equations, 269( 5), 4381-4405. doi:10.1016/j.jde.2020.03.031
    • NLM

      Iturriaga L, Massa ET. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4381-4405.Available from: https://doi.org/10.1016/j.jde.2020.03.031
    • Vancouver

      Iturriaga L, Massa ET. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4381-4405.Available from: https://doi.org/10.1016/j.jde.2020.03.031
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Topologia Dinâmica, Transversalidade, Equações Diferenciais Parciais, Invariantes

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque; CARDOSO, Cesar Augusto Esteves das Neves; CARVALHO, Alexandre Nolasco de; PIRES, Leonardo. Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, San Diego, Elsevier, v. 269, n. 3, p. 1904-1943, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.01.024 > DOI: 10.1016/j.jde.2020.01.024.
    • APA

      Bortolan, M. C., Cardoso, C. A. E. das N., Carvalho, A. N. de, & Pires, L. (2020). Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, 269( 3), 1904-1943. doi:10.1016/j.jde.2020.01.024
    • NLM

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.Available from: https://doi.org/10.1016/j.jde.2020.01.024
    • Vancouver

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.Available from: https://doi.org/10.1016/j.jde.2020.01.024
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais Elíticas De 2ª Ordem, Sistemas Sobredeterminados, Simetria

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Ederson Moreira dos; NORNBERG, Gabrielle. Symmetry properties of positive solutions for fully nonlinear elliptic systems. Journal of Differential Equations, San Diego, Academic Press, v. 269, n. 5, p. 4175-4191, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.03.023 > DOI: 10.1016/j.jde.2020.03.023.
    • APA

      Santos, E. M. dos, & Nornberg, G. (2020). Symmetry properties of positive solutions for fully nonlinear elliptic systems. Journal of Differential Equations, 269( 5), 4175-4191. doi:10.1016/j.jde.2020.03.023
    • NLM

      Santos EM dos, Nornberg G. Symmetry properties of positive solutions for fully nonlinear elliptic systems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4175-4191.Available from: https://doi.org/10.1016/j.jde.2020.03.023
    • Vancouver

      Santos EM dos, Nornberg G. Symmetry properties of positive solutions for fully nonlinear elliptic systems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4175-4191.Available from: https://doi.org/10.1016/j.jde.2020.03.023
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Funcionais, Sistemas Dinâmicos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; DEMUNER, D. P.; JIMENEZ, M. Z. Convergence for non-autonomous semidynamical systems with impulses. Journal of Differential Equations, Amsterdam, Elsevier, v. 266, n. Ja 2019, p. 227-256, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2018.07.035 > DOI: 10.1016/j.jde.2018.07.035.
    • APA

      Bonotto, E. de M., Demuner, D. P., & Jimenez, M. Z. (2019). Convergence for non-autonomous semidynamical systems with impulses. Journal of Differential Equations, 266( Ja 2019), 227-256. doi:10.1016/j.jde.2018.07.035
    • NLM

      Bonotto E de M, Demuner DP, Jimenez MZ. Convergence for non-autonomous semidynamical systems with impulses [Internet]. Journal of Differential Equations. 2019 ; 266( Ja 2019): 227-256.Available from: http://dx.doi.org/10.1016/j.jde.2018.07.035
    • Vancouver

      Bonotto E de M, Demuner DP, Jimenez MZ. Convergence for non-autonomous semidynamical systems with impulses [Internet]. Journal of Differential Equations. 2019 ; 266( Ja 2019): 227-256.Available from: http://dx.doi.org/10.1016/j.jde.2018.07.035
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Operadores Lineares

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, San Diego, Academic Press, v. 267, n. 5, p. 3199-3231, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2019.04.002 > DOI: 10.1016/j.jde.2019.04.002.
    • APA

      Silva, E. R. da. (2019). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, 267( 5), 3199-3231. doi:10.1016/j.jde.2019.04.002
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.002
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.002
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Análise Global

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco; LAGUNA, Renato Andrielli; ZANI, Sérgio Luís. Global hypoellipticity of planar complex vector fields. Journal of Differential Equations, San Diego, Academic Press, v. 267, n. 9, p. 5220-5257, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2019.05.027 > DOI: 10.1016/j.jde.2019.05.027.
    • APA

      Bergamasco, A. P., Laguna, R. A., & Zani, S. L. (2019). Global hypoellipticity of planar complex vector fields. Journal of Differential Equations, 267( 9), 5220-5257. doi:10.1016/j.jde.2019.05.027
    • NLM

      Bergamasco AP, Laguna RA, Zani SL. Global hypoellipticity of planar complex vector fields [Internet]. Journal of Differential Equations. 2019 ; 267( 9): 5220-5257.Available from: http://dx.doi.org/10.1016/j.jde.2019.05.027
    • Vancouver

      Bergamasco AP, Laguna RA, Zani SL. Global hypoellipticity of planar complex vector fields [Internet]. Journal of Differential Equations. 2019 ; 267( 9): 5220-5257.Available from: http://dx.doi.org/10.1016/j.jde.2019.05.027
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Estabilidade De Liapunov

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; GRAU, R; MESQUITA, Jaqueline Godoy; TOON, Eduard. Lyapunov stability for measure differential equations and dynamic equations on time scales. Journal of Differential Equations, San Diego, Academic Press, v. 267, n. 7, p. Se 2019, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2019.04.035 > DOI: 10.1016/j.jde.2019.04.035.
    • APA

      Federson, M. C. A. B., Grau, R., Mesquita, J. G., & Toon, E. (2019). Lyapunov stability for measure differential equations and dynamic equations on time scales. Journal of Differential Equations, 267( 7), Se 2019. doi:10.1016/j.jde.2019.04.035
    • NLM

      Federson MCAB, Grau R, Mesquita JG, Toon E. Lyapunov stability for measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2019 ; 267( 7): Se 2019.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.035
    • Vancouver

      Federson MCAB, Grau R, Mesquita JG, Toon E. Lyapunov stability for measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2019 ; 267( 7): Se 2019.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.035
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Funcionais, Equações Diferenciais Ordinárias, Equações Diferenciais Parciais, Equações Integrais, Integração, Equações Diferenciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; FEDERSON, Márcia Cristina Anderson Braz; SANTOS, F. L. Dichotomies for generalized ordinary differential equations and applications. Journal of Differential Equations, Amsterdam, Elsevier, n. 5, p. 3131-3173, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jde.2017.11.013 > DOI: 10.1016/j.jde.2017.11.013.
    • APA

      Bonotto, E. de M., Federson, M. C. A. B., & Santos, F. L. (2018). Dichotomies for generalized ordinary differential equations and applications. Journal of Differential Equations, ( 5), 3131-3173. doi:10.1016/j.jde.2017.11.013
    • NLM

      Bonotto E de M, Federson MCAB, Santos FL. Dichotomies for generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2018 ;( 5): 3131-3173.Available from: http://dx.doi.org/10.1016/j.jde.2017.11.013
    • Vancouver

      Bonotto E de M, Federson MCAB, Santos FL. Dichotomies for generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2018 ;( 5): 3131-3173.Available from: http://dx.doi.org/10.1016/j.jde.2017.11.013
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Séries De Fourier

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco; SILVA, Paulo Leandro Dattori da; GONZALEZ, R. B. Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus. Journal of Differential Equations, San Diego, Elsevier, v. 264, n. 5, p. 3500-3526, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jde.2017.11.022 > DOI: 10.1016/j.jde.2017.11.022.
    • APA

      Bergamasco, A. P., Silva, P. L. D. da, & Gonzalez, R. B. (2018). Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus. Journal of Differential Equations, 264( 5), 3500-3526. doi:10.1016/j.jde.2017.11.022
    • NLM

      Bergamasco AP, Silva PLD da, Gonzalez RB. Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus [Internet]. Journal of Differential Equations. 2018 ; 264( 5): 3500-3526.Available from: http://dx.doi.org/10.1016/j.jde.2017.11.022
    • Vancouver

      Bergamasco AP, Silva PLD da, Gonzalez RB. Global solvability and global hypoellipticity in Gevrey classes for vector fields on the torus [Internet]. Journal of Differential Equations. 2018 ; 264( 5): 3500-3526.Available from: http://dx.doi.org/10.1016/j.jde.2017.11.022
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Dinâmica Topológica, Equações Diferenciais Parciais, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CONTI, M; MA, To Fu; MARCHINI, E. M; HUERTAS, P. N. Seminario. Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, San Diego, Elsevier, v. 264, n. 7, p. 4235-4259, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jde.2017.12.010 > DOI: 10.1016/j.jde.2017.12.010.
    • APA

      Conti, M., Ma, T. F., Marchini, E. M., & Huertas, P. N. S. (2018). Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, 264( 7), 4235-4259. doi:10.1016/j.jde.2017.12.010
    • NLM

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.Available from: http://dx.doi.org/10.1016/j.jde.2017.12.010
    • Vancouver

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.Available from: http://dx.doi.org/10.1016/j.jde.2017.12.010
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais De 1ª Ordem, Análise Global

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANA, C; SILVA, Paulo Leandro Dattori da; MEZIANI, A. A class of planar vector fields with homogeneous singular points: solvability and boundary value problems. Journal of Differential Equations, San Diego, Elsevier, v. No 2018, n. 10, p. 5297-5314, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jde.2018.06.035 > DOI: 10.1016/j.jde.2018.06.035.
    • APA

      Campana, C., Silva, P. L. D. da, & Meziani, A. (2018). A class of planar vector fields with homogeneous singular points: solvability and boundary value problems. Journal of Differential Equations, No 2018( 10), 5297-5314. doi:10.1016/j.jde.2018.06.035
    • NLM

      Campana C, Silva PLD da, Meziani A. A class of planar vector fields with homogeneous singular points: solvability and boundary value problems [Internet]. Journal of Differential Equations. 2018 ; No 2018( 10): 5297-5314.Available from: http://dx.doi.org/10.1016/j.jde.2018.06.035
    • Vancouver

      Campana C, Silva PLD da, Meziani A. A class of planar vector fields with homogeneous singular points: solvability and boundary value problems [Internet]. Journal of Differential Equations. 2018 ; No 2018( 10): 5297-5314.Available from: http://dx.doi.org/10.1016/j.jde.2018.06.035
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Da Onda, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu; MARÍN-RUBIO, Pedro; CHUÑO, Christian Manuel Surco. Dynamics of wave equations with moving boundary. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 262, n. 5, p. 3317-3342, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jde.2016.11.030 > DOI: 10.1016/j.jde.2016.11.030.
    • APA

      Ma, T. F., Marín-Rubio, P., & Chuño, C. M. S. (2017). Dynamics of wave equations with moving boundary. Journal of Differential Equations, 262( 5), 3317-3342. doi:10.1016/j.jde.2016.11.030
    • NLM

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.030
    • Vancouver

      Ma TF, Marín-Rubio P, Chuño CMS. Dynamics of wave equations with moving boundary [Internet]. Journal of Differential Equations. 2017 ; 262( 5): 3317-3342.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.030
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Funcionais, Equações Diferenciais Ordinárias, Equações Diferenciais Parciais, Equações Integrais, Integração

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; BORTOLAN, M. C; CARABALLO, T; COLLEGARI, R. Attractors for impulsive non-autonomous dynamical systems and their relations. Journal of Differential Equations, Amsterdam, Elsevier, v. 262, n. 6, p. 3524-3550, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jde.2016.11.036 > DOI: 10.1016/j.jde.2016.11.036.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2017). Attractors for impulsive non-autonomous dynamical systems and their relations. Journal of Differential Equations, 262( 6), 3524-3550. doi:10.1016/j.jde.2016.11.036
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Attractors for impulsive non-autonomous dynamical systems and their relations [Internet]. Journal of Differential Equations. 2017 ; 262( 6): 3524-3550.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.036
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Attractors for impulsive non-autonomous dynamical systems and their relations [Internet]. Journal of Differential Equations. 2017 ; 262( 6): 3524-3550.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.036
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Ordinárias, Integração

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; GRAU, R; MESQUITA, J. G; TOON, E. Boundedness of solutions of measure differential equations and dynamic equations on time scales. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 263, n. 1, p. 26-56, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jde.2017.02.008 > DOI: 10.1016/j.jde.2017.02.008.
    • APA

      Federson, M. C. A. B., Grau, R., Mesquita, J. G., & Toon, E. (2017). Boundedness of solutions of measure differential equations and dynamic equations on time scales. Journal of Differential Equations, 263( 1), 26-56. doi:10.1016/j.jde.2017.02.008
    • NLM

      Federson MCAB, Grau R, Mesquita JG, Toon E. Boundedness of solutions of measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2017 ; 263( 1): 26-56.Available from: http://dx.doi.org/10.1016/j.jde.2017.02.008
    • Vancouver

      Federson MCAB, Grau R, Mesquita JG, Toon E. Boundedness of solutions of measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2017 ; 263( 1): 26-56.Available from: http://dx.doi.org/10.1016/j.jde.2017.02.008
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Ordinárias, Sincronização

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz; SOLÀ-MORALES, J. Differentiability with respect to parameters in global smooth linearization. Journal of Differential Equations, Amsterdam, Elsevier, v. 262, n. 6, p. 3583-3596, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jde.2016.11.038 > DOI: 10.1016/j.jde.2016.11.038.
    • APA

      Rodrigues, H. M., & Solà-Morales, J. (2017). Differentiability with respect to parameters in global smooth linearization. Journal of Differential Equations, 262( 6), 3583-3596. doi:10.1016/j.jde.2016.11.038
    • NLM

      Rodrigues HM, Solà-Morales J. Differentiability with respect to parameters in global smooth linearization [Internet]. Journal of Differential Equations. 2017 ; 262( 6): 3583-3596.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.038
    • Vancouver

      Rodrigues HM, Solà-Morales J. Differentiability with respect to parameters in global smooth linearization [Internet]. Journal of Differential Equations. 2017 ; 262( 6): 3583-3596.Available from: http://dx.doi.org/10.1016/j.jde.2016.11.038
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Funcionais, Equações Diferenciais Ordinárias, Equações Diferenciais Parciais, Equações Integrais, Integração

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; BORTOLAN, M. C; COLLEGARI, R; CZAJA, R. Semicontinuity of attractors for impulsive dynamical systems. Journal of Differential Equations, Amsterdam, Elsevier, v. 261, n. 8, p. 4338-4367, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jde.2016.06.024 > DOI: 10.1016/j.jde.2016.06.024.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Collegari, R., & Czaja, R. (2016). Semicontinuity of attractors for impulsive dynamical systems. Journal of Differential Equations, 261( 8), 4338-4367. doi:10.1016/j.jde.2016.06.024
    • NLM

      Bonotto E de M, Bortolan MC, Collegari R, Czaja R. Semicontinuity of attractors for impulsive dynamical systems [Internet]. Journal of Differential Equations. 2016 ; 261( 8): 4338-4367.Available from: http://dx.doi.org/10.1016/j.jde.2016.06.024
    • Vancouver

      Bonotto E de M, Bortolan MC, Collegari R, Czaja R. Semicontinuity of attractors for impulsive dynamical systems [Internet]. Journal of Differential Equations. 2016 ; 261( 8): 4338-4367.Available from: http://dx.doi.org/10.1016/j.jde.2016.06.024
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Equações Diferenciais Parciais Hiperbólicas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA JR, Vanderley; GAZZOLA, Filippo; SANTOS, Ederson Moreira dos. Instability of modes in a partially hinged rectangular plate. Journal of Differential Equations, San Diego, Elsevier, v. 261, n. 11, p. 6302-6340, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jde.2016.08.037 > DOI: 10.1016/j.jde.2016.08.037.
    • APA

      Ferreira Jr, V., Gazzola, F., & Santos, E. M. dos. (2016). Instability of modes in a partially hinged rectangular plate. Journal of Differential Equations, 261( 11), 6302-6340. doi:10.1016/j.jde.2016.08.037
    • NLM

      Ferreira Jr V, Gazzola F, Santos EM dos. Instability of modes in a partially hinged rectangular plate [Internet]. Journal of Differential Equations. 2016 ; 261( 11): 6302-6340.Available from: http://dx.doi.org/10.1016/j.jde.2016.08.037
    • Vancouver

      Ferreira Jr V, Gazzola F, Santos EM dos. Instability of modes in a partially hinged rectangular plate [Internet]. Journal of Differential Equations. 2016 ; 261( 11): 6302-6340.Available from: http://dx.doi.org/10.1016/j.jde.2016.08.037
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais, Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAVALCANTI, M. M; FATORI, L. H; MA, To Fu. Attractors for wave equations with degenerate memory. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 260, n. Ja 2016, p. 56-83, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jde.2015.08.050 > DOI: 10.1016/j.jde.2015.08.050.
    • APA

      Cavalcanti, M. M., Fatori, L. H., & Ma, T. F. (2016). Attractors for wave equations with degenerate memory. Journal of Differential Equations, 260( Ja 2016), 56-83. doi:10.1016/j.jde.2015.08.050
    • NLM

      Cavalcanti MM, Fatori LH, Ma TF. Attractors for wave equations with degenerate memory [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 56-83.Available from: http://dx.doi.org/10.1016/j.jde.2015.08.050
    • Vancouver

      Cavalcanti MM, Fatori LH, Ma TF. Attractors for wave equations with degenerate memory [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 56-83.Available from: http://dx.doi.org/10.1016/j.jde.2015.08.050
  • In: Journal of Differential Equations. Unidade: ICMC

    Subjects: Singularidades, Teoria Qualitativa, Equações Diferenciais Ordinárias

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, J; MEZA-SARMIENTO, I. S; OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse Bott integrable systems on surfaces. Journal of Differential Equations, San Diego, Academic Press/Elsevier, v. 260, n. Ja 2016, p. 688-707, 2016. Disponível em: < http://dx.doi.org/10.1016/j.jde.2015.09.008 > DOI: 10.1016/j.jde.2015.09.008.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2016). Singular levels and topological invariants of Morse Bott integrable systems on surfaces. Journal of Differential Equations, 260( Ja 2016), 688-707. doi:10.1016/j.jde.2015.09.008
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse Bott integrable systems on surfaces [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 688-707.Available from: http://dx.doi.org/10.1016/j.jde.2015.09.008
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse Bott integrable systems on surfaces [Internet]. Journal of Differential Equations. 2016 ; 260( Ja 2016): 688-707.Available from: http://dx.doi.org/10.1016/j.jde.2015.09.008


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020