Filters : "ICMC" "Polônia" Limpar

Filters



Refine with date range


  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Estabilidade De Liapunov, Equações Impulsivas, Estabilidade

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; SOUTO, Ginnara M. On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, Torun, PL, Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University, v. 53, n. 1, p. 127-150, 2019. Disponível em: < http://dx.doi.org/10.12775/TMNA.2018.042 > DOI: 10.12775/TMNA.2018.042.
    • APA

      Bonotto, E. de M., & Souto, G. M. (2019). On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, 53( 1), 127-150. doi:10.12775/TMNA.2018.042
    • NLM

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.Available from: http://dx.doi.org/10.12775/TMNA.2018.042
    • Vancouver

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.Available from: http://dx.doi.org/10.12775/TMNA.2018.042
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais Parabólicas, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; PIRES, Leonardo. Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 53, n. 1, p. 1-23, 2019. Disponível em: < http://dx.doi.org/10.12775/TMNA.2018.048 > DOI: 10.12775/TMNA.2018.048.
    • APA

      Carvalho, A. N. de, & Pires, L. (2019). Parabolic equations with localized large diffusion: rate of convergence of attractors. Topological Methods in Nonlinear Analysis, 53( 1), 1-23. doi:10.12775/TMNA.2018.048
    • NLM

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.Available from: http://dx.doi.org/10.12775/TMNA.2018.048
    • Vancouver

      Carvalho AN de, Pires L. Parabolic equations with localized large diffusion: rate of convergence of attractors [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 1-23.Available from: http://dx.doi.org/10.12775/TMNA.2018.048
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Teoria Do índice, Topologia Dinâmica, Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 54, n. 1, p. Se 2019, 2019. Disponível em: < https://doi.org/10.12775/TMNA.2019.023 > DOI: 10.12775/TMNA.2019.023.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2019). Conley index continuation for a singularly perturbed periodic boundary value problem. Topological Methods in Nonlinear Analysis, 54( 1), Se 2019. doi:10.12775/TMNA.2019.023
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.Available from: https://doi.org/10.12775/TMNA.2019.023
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for a singularly perturbed periodic boundary value problem [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 54( 1): Se 2019.Available from: https://doi.org/10.12775/TMNA.2019.023
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Topologia Algébrica

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S; MANZOLI NETO, Oziride; REZENDE, Ketty A. de; SILVEIRA, Mariana R. da. Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 51, n. 1, p. 259-311, 2018. Disponível em: < http://dx.doi.org/10.12775/TMNA.2017.047 > DOI: 10.12775/TMNA.2017.047.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., Rezende, K. A. de, & Silveira, M. R. da. (2018). Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, 51( 1), 259-311. doi:10.12775/TMNA.2017.047
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.Available from: http://dx.doi.org/10.12775/TMNA.2017.047
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.Available from: http://dx.doi.org/10.12775/TMNA.2017.047
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Teoria Ergódica, Topologia Diferencial, Teoria Das Singularidades

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARTÍNEZ-ALFARO, José; MEZA-SARMIENTO, Ingrid S; OLIVEIRA, Regilene Delazari dos Santos. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center, v. 51, n. 1, p. 183-213, 2018. Disponível em: < http://dx.doi.org/10.12775/TMNA.2017.051 > DOI: 10.12775/TMNA.2017.051.
    • APA

      Martínez-Alfaro, J., Meza-Sarmiento, I. S., & Oliveira, R. D. dos S. (2018). Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces. Topological Methods in Nonlinear Analysis, 51( 1), 183-213. doi:10.12775/TMNA.2017.051
    • NLM

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.Available from: http://dx.doi.org/10.12775/TMNA.2017.051
    • Vancouver

      Martínez-Alfaro J, Meza-Sarmiento IS, Oliveira RD dos S. Singular levels and topological invariants of Morse–Bott foliations on non-orientable surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 183-213.Available from: http://dx.doi.org/10.12775/TMNA.2017.051
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais Parabólicas, Teoria Espectral, Teoria Do índice

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 52, n. 2, p. 631-664, 2018. Disponível em: < http://dx.doi.org/10.12775/TMNA.2018.025 > DOI: 10.12775/TMNA.2018.025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2018). On spectral convergence for some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 52( 2), 631-664. doi:10.12775/TMNA.2018.025
    • NLM

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.Available from: http://dx.doi.org/10.12775/TMNA.2018.025
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On spectral convergence for some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 52( 2): 631-664.Available from: http://dx.doi.org/10.12775/TMNA.2018.025
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Equações Diferenciais Parciais Parabólicas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center, v. 50, n. 2, p. 741-755, 2017. Disponível em: < http://dx.doi.org/10.12775/TMNA.2017.043 > DOI: 10.12775/TMNA.2017.043.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2017). A note on Conley index and some parabolic problems with locally large diffusion. Topological Methods in Nonlinear Analysis, 50( 2), 741-755. doi:10.12775/TMNA.2017.043
    • NLM

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.Available from: http://dx.doi.org/10.12775/TMNA.2017.043
    • Vancouver

      Carbinatto M do C, Rybakowski KP. A note on Conley index and some parabolic problems with locally large diffusion [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 50( 2): 741-755.Available from: http://dx.doi.org/10.12775/TMNA.2017.043
  • In: Colloquium Mathematicum. Unidade: ICMC

    Subjects: Anéis E álgebras Comutativos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALLEJAS-BEDREGAL, R; PÉREZ, Victor Hugo Jorge. On Lech's limit formula for modules. Colloquium Mathematicum, Warsaw, IMPAN, v. 148, n. 1, p. 27-37, 2017. Disponível em: < http://dx.doi.org/10.4064/cm6870-6-2016 > DOI: 10.4064/cm6870-6-2016.
    • APA

      Callejas-Bedregal, R., & Pérez, V. H. J. (2017). On Lech's limit formula for modules. Colloquium Mathematicum, 148( 1), 27-37. doi:10.4064/cm6870-6-2016
    • NLM

      Callejas-Bedregal R, Pérez VHJ. On Lech's limit formula for modules [Internet]. Colloquium Mathematicum. 2017 ; 148( 1): 27-37.Available from: http://dx.doi.org/10.4064/cm6870-6-2016
    • Vancouver

      Callejas-Bedregal R, Pérez VHJ. On Lech's limit formula for modules [Internet]. Colloquium Mathematicum. 2017 ; 148( 1): 27-37.Available from: http://dx.doi.org/10.4064/cm6870-6-2016
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Equações Impulsivas, Estabilidade

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; GIMENES, Luciene P.; SOUTO, Ginnara M. Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, Torun, PL, Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University, v. 49, n. 1, p. 133-163, 2017. Disponível em: < http://dx.doi.org/10.12775/TMNA.2016.065 > DOI: 10.12775/TMNA.2016.065.
    • APA

      Bonotto, E. de M., Gimenes, L. P., & Souto, G. M. (2017). Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, 49( 1), 133-163. doi:10.12775/TMNA.2016.065
    • NLM

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.Available from: http://dx.doi.org/10.12775/TMNA.2016.065
    • Vancouver

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.Available from: http://dx.doi.org/10.12775/TMNA.2016.065
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Equações Não Lineares, Equações Diferenciais Parciais Parabólicas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de; CARVALHO, Alexandre Nolasco de; CARVALHO-NETO, Paulo M; MARÍN-RUBIO, Pedro. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 45, n. 2, p. 439-467, 2015. Disponível em: < http://projecteuclid.org/euclid.tmna/1459343991 > DOI: 10.12775/tmna.2015.022.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.Available from: http://projecteuclid.org/euclid.tmna/1459343991
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.Available from: http://projecteuclid.org/euclid.tmna/1459343991
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Sistemas Dinâmicos, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C; CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 46, n. 2, p. 563-602, 2015. Disponível em: < http://projecteuclid.org/euclid.tmna/1458588652 > DOI: 10.12775/tmna.2015.059.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.Available from: http://projecteuclid.org/euclid.tmna/1458588652
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.Available from: http://projecteuclid.org/euclid.tmna/1458588652
  • In: Acta Arithmetica. Unidade: ICMC

    Subjects: Funções Algébricas, Curvas Algébricas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKELIAN, Nazar; BORGES FILHO, Herivelto Martins. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree. Acta Arithmetica, Warszawa, Polish Academy of Sciences, Institute of Mathematics, v. 167, p. 43-66, 2015. Disponível em: < http://dx.doi.org/10.4064/aa167-1-3 > DOI: 10.4064/aa167-1-3.
    • APA

      Arakelian, N., & Borges Filho, H. M. (2015). Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree. Acta Arithmetica, 167, 43-66. doi:10.4064/aa167-1-3
    • NLM

      Arakelian N, Borges Filho HM. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree [Internet]. Acta Arithmetica. 2015 ; 167 43-66.Available from: http://dx.doi.org/10.4064/aa167-1-3
    • Vancouver

      Arakelian N, Borges Filho HM. Frobenius nonclassicality with respect to linear systems of curves of arbitrary degree [Internet]. Acta Arithmetica. 2015 ; 167 43-66.Available from: http://dx.doi.org/10.4064/aa167-1-3
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Equação De Schrodinger, Geometria Algébrica

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor O; NEMER, Rodrigo C. M; SOARES, Sérgio Henrique Monari. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 46, n. 1, p. 329-362, 2015. DOI: 10.12775/tmna.2015.050.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2015). Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, 46( 1), 329-362. doi:10.12775/tmna.2015.050
    • NLM

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Equações Diferenciais Parciais Elíticas

    DOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira; SANTOS, Ederson Moreira dos. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 45, n. 2, p. 551-574, 2015. DOI: 10.12775/tmna.2015.026.
    • APA

      Melo, J. L. F., & Santos, E. M. dos. (2015). A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, 45( 2), 551-574. doi:10.12775/tmna.2015.026
    • NLM

      Melo JLF, Santos EM dos. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.
    • Vancouver

      Melo JLF, Santos EM dos. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Equações Impulsivas

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; JIMENEZ, Manuel Francisco Zuloeta. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 44, n. 1, p. 121-141, 2014. Disponível em: < https://projecteuclid.org/euclid.tmna/1460381473 > DOI: 10.12775/tmna.2014.039.
    • APA

      Bonotto, E. de M., & Jimenez, M. F. Z. (2014). On impulsive semidynamical systems: minimal, recurrent and almost periodic motions. Topological Methods in Nonlinear Analysis, 44( 1), 121-141. doi:10.12775/tmna.2014.039
    • NLM

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.Available from: https://projecteuclid.org/euclid.tmna/1460381473
    • Vancouver

      Bonotto E de M, Jimenez MFZ. On impulsive semidynamical systems: minimal, recurrent and almost periodic motions [Internet]. Topological Methods in Nonlinear Analysis. 2014 ; 44( 1): 121-141.Available from: https://projecteuclid.org/euclid.tmna/1460381473
  • In: Acta Arithmetica. Unidade: ICMC

    Subjects: Geometria Finita, Teoria Dos Números, Anéis E álgebras Comutativos, Geometria Algébrica

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins; MOTTA, Beatriz; TORRES, Fernando. Complete arcs arising from a generalization of the Hermitian curve. Acta Arithmetica, Warsaw, Polish Academy of Sciences, Institute of Mathematics, v. 164, p. 101-118, 2014. Disponível em: < http://dx.doi.org/10.4064/aa164-2-1 > DOI: 10.4064/aa164-2-1.
    • APA

      Borges Filho, H. M., Motta, B., & Torres, F. (2014). Complete arcs arising from a generalization of the Hermitian curve. Acta Arithmetica, 164, 101-118. doi:10.4064/aa164-2-1
    • NLM

      Borges Filho HM, Motta B, Torres F. Complete arcs arising from a generalization of the Hermitian curve [Internet]. Acta Arithmetica. 2014 ; 164 101-118.Available from: http://dx.doi.org/10.4064/aa164-2-1
    • Vancouver

      Borges Filho HM, Motta B, Torres F. Complete arcs arising from a generalization of the Hermitian curve [Internet]. Acta Arithmetica. 2014 ; 164 101-118.Available from: http://dx.doi.org/10.4064/aa164-2-1
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 42, n. 2, p. 233-256, 2013.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.
  • In: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: Dinâmica Topológica, Equações Impulsivas, Sistemas Dissipativo

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; DEMUNER, Daniela P. Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Centre for Nonlinear Studies, v. 41, n. 1, p. 1-38, 2013. Disponível em: < https://projecteuclid.org/euclid.tmna/1461253854 >.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2013). Autonomous dissipative semidynamical systems with impulses. Topological Methods in Nonlinear Analysis, 41( 1), 1-38. Recuperado de https://projecteuclid.org/euclid.tmna/1461253854
    • NLM

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.Available from: https://projecteuclid.org/euclid.tmna/1461253854
    • Vancouver

      Bonotto E de M, Demuner DP. Autonomous dissipative semidynamical systems with impulses [Internet]. Topological Methods in Nonlinear Analysis. 2013 ; 41( 1): 1-38.Available from: https://projecteuclid.org/euclid.tmna/1461253854
  • In: Central European Journal of Mathematics. Unidade: ICMC

    Subjects: Singularidades

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Raimundo Nonato Araújo dos; CHEN, Ying; TIBAR, Mihai. Singular open book structures from real mappings. Central European Journal of Mathematics, Warsaw, Versita, v. 11, n. 5, p. 817-828, 2013. Disponível em: < http://dx.doi.org/10.2478/s11533-013-0212-1 > DOI: 10.2478/s11533-013-0212-1.
    • APA

      Santos, R. N. A. dos, CHEN, Y., & Tibar, M. (2013). Singular open book structures from real mappings. Central European Journal of Mathematics, 11( 5), 817-828. doi:10.2478/s11533-013-0212-1
    • NLM

      Santos RNA dos, CHEN Y, Tibar M. Singular open book structures from real mappings [Internet]. Central European Journal of Mathematics. 2013 ; 11( 5): 817-828.Available from: http://dx.doi.org/10.2478/s11533-013-0212-1
    • Vancouver

      Santos RNA dos, CHEN Y, Tibar M. Singular open book structures from real mappings [Internet]. Central European Journal of Mathematics. 2013 ; 11( 5): 817-828.Available from: http://dx.doi.org/10.2478/s11533-013-0212-1
  • In: Central European Journal of Computer Science. Unidade: ICMC

    Subjects: Engenharia De Software, Sistemas De Informação

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALBERTO, Alex D. B; SIMÃO, Adenilso da Silva. Iterative minimization of partial finite state machines. Central European Journal of Computer Science, Varsóvia , Polônia, Versita, co-publicado com a Springer-Verlag GmbH, v. 3, n. 2 , p. 91-103, 2013. Disponível em: < http://dx.doi.org/10.2478/s13537-013-0106-0 > DOI: 10.2478/s13537-013-0106-0.
    • APA

      Alberto, A. D. B., & Simão, A. da S. (2013). Iterative minimization of partial finite state machines. Central European Journal of Computer Science, 3( 2 ), 91-103. doi:10.2478/s13537-013-0106-0
    • NLM

      Alberto ADB, Simão A da S. Iterative minimization of partial finite state machines [Internet]. Central European Journal of Computer Science. 2013 ; 3( 2 ): 91-103.Available from: http://dx.doi.org/10.2478/s13537-013-0106-0
    • Vancouver

      Alberto ADB, Simão A da S. Iterative minimization of partial finite state machines [Internet]. Central European Journal of Computer Science. 2013 ; 3( 2 ): 91-103.Available from: http://dx.doi.org/10.2478/s13537-013-0106-0


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020