Filters : "ICMC" "MANZOLI NETO, OZIRIDE" Limpar

Filters



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: HOMOTOPIA, HOMOLOGIA, COHOMOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, v. 56, n. 2, p. 473-482, 2020Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2020.056. Acesso em: 03 out. 2022.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2020). Representing homotopy classes by maps with certain minimality root properties II. Topological Methods in Nonlinear Analysis, 56( 2), 473-482. doi:10.12775/TMNA.2020.056
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2022 out. 03 ] Available from: https://doi.org/10.12775/TMNA.2020.056
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties II [Internet]. Topological Methods in Nonlinear Analysis. 2020 ; 56( 2): 473-482.[citado 2022 out. 03 ] Available from: https://doi.org/10.12775/TMNA.2020.056
  • Source: Geometriae Dedicata. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, DINÂMICA TOPOLÓGICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S e MANZOLI NETO, Oziride e REZENDE, Ketty Abaroa de. On handle theory for Morse-Bott critical manifolds. Geometriae Dedicata, v. 202, n. 1, p. 265-309, 2019Tradução . . Disponível em: http://dx.doi.org/10.1007/s10711-018-0413-7. Acesso em: 03 out. 2022.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., & Rezende, K. A. de. (2019). On handle theory for Morse-Bott critical manifolds. Geometriae Dedicata, 202( 1), 265-309. doi:10.1007/s10711-018-0413-7
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de. On handle theory for Morse-Bott critical manifolds [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 265-309.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1007/s10711-018-0413-7
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de. On handle theory for Morse-Bott critical manifolds [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 265-309.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1007/s10711-018-0413-7
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TOPOLOGIA ALGÉBRICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S et al. Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 259-311, 2018Tradução . . Disponível em: http://dx.doi.org/10.12775/TMNA.2017.047. Acesso em: 03 out. 2022.
    • APA

      Lima, D. V. de S., Rezende, K. A. de, Silveira, M. R. da, & Manzoli Neto, O. (2018). Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, 51( 1), 259-311. doi:10.12775/TMNA.2017.047
    • NLM

      Lima DV de S, Rezende KA de, Silveira MR da, Manzoli Neto O. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.12775/TMNA.2017.047
    • Vancouver

      Lima DV de S, Rezende KA de, Silveira MR da, Manzoli Neto O. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.12775/TMNA.2017.047
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty A. de et al. Lyapunov graphs for circle valued functions. Topology and its Applications, v. 245, p. 62-91, 2018Tradução . . Disponível em: http://dx.doi.org/10.1016/j.topol.2018.06.008. Acesso em: 03 out. 2022.
    • APA

      Rezende, K. A. de, Ledesma, G. G. E., Manzoli Neto, O., & Vago, G. M. (2018). Lyapunov graphs for circle valued functions. Topology and its Applications, 245, 62-91. doi:10.1016/j.topol.2018.06.008
    • NLM

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2018.06.008
    • Vancouver

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2018.06.008
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÊMINA, L. L et al. Fundamental domain and cellular decomposition of tetrahedral spherical space forms. Communications in Algebra, v. 44, n. 2, p. 768-786, 2016Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2014.990022. Acesso em: 03 out. 2022.
    • APA

      Fêmina, L. L., Galves, A. P. T., Manzoli Neto, O., & Spreafico, M. (2016). Fundamental domain and cellular decomposition of tetrahedral spherical space forms. Communications in Algebra, 44( 2), 768-786. doi:10.1080/00927872.2014.990022
    • NLM

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico M. Fundamental domain and cellular decomposition of tetrahedral spherical space forms [Internet]. Communications in Algebra. 2016 ; 44( 2): 768-786.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1080/00927872.2014.990022
    • Vancouver

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico M. Fundamental domain and cellular decomposition of tetrahedral spherical space forms [Internet]. Communications in Algebra. 2016 ; 44( 2): 768-786.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1080/00927872.2014.990022
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, HOMOTOPIA, HOMOLOGIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Representing homotopy classes by maps with certain minimality root properties. Proceedings of the Royal Society of Edinburgh, v. 146A, n. 5, p. 1005-1015, 2016Tradução . . Disponível em: http://dx.doi.org/10.1017/S030821051500075X. Acesso em: 03 out. 2022.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2016). Representing homotopy classes by maps with certain minimality root properties. Proceedings of the Royal Society of Edinburgh, 146A( 5), 1005-1015. doi:10.1017/S030821051500075X
    • NLM

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties [Internet]. Proceedings of the Royal Society of Edinburgh. 2016 ; 146A( 5): 1005-1015.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1017/S030821051500075X
    • Vancouver

      Penteado NCL, Manzoli Neto O. Representing homotopy classes by maps with certain minimality root properties [Internet]. Proceedings of the Royal Society of Edinburgh. 2016 ; 146A( 5): 1005-1015.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1017/S030821051500075X
  • Source: Resumos. Conference title: Encontro Regional de Topologia. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PENTEADO, Northon Canevari Leme e MANZOLI NETO, Oziride. Special maps from surfaces to 'S POT.2' 'OU' 'S POT.1'. 2015, Anais.. São Carlos: ICMC-USP/DM-UFSCar, 2015. Disponível em: http://www.dm.ufscar.br/profs/ert2015/caderno.pdf. Acesso em: 03 out. 2022.
    • APA

      Penteado, N. C. L., & Manzoli Neto, O. (2015). Special maps from surfaces to 'S POT.2' 'OU' 'S POT.1'. In Resumos. São Carlos: ICMC-USP/DM-UFSCar. Recuperado de http://www.dm.ufscar.br/profs/ert2015/caderno.pdf
    • NLM

      Penteado NCL, Manzoli Neto O. Special maps from surfaces to 'S POT.2' 'OU' 'S POT.1' [Internet]. Resumos. 2015 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2015/caderno.pdf
    • Vancouver

      Penteado NCL, Manzoli Neto O. Special maps from surfaces to 'S POT.2' 'OU' 'S POT.1' [Internet]. Resumos. 2015 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2015/caderno.pdf
  • Source: Ergodic Theory and Dynamical Systems. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty A. de e MANZOLI NETO, Oziride e LEDESMA, Guido G. E. Smale flows on 'S POT.2' x 'S POT.1'. Ergodic Theory and Dynamical Systems, v. 35, n. 5, p. 1546-1581, 2015Tradução . . Disponível em: http://dx.doi.org/10.1017/etds.2015.2. Acesso em: 03 out. 2022.
    • APA

      Rezende, K. A. de, Manzoli Neto, O., & Ledesma, G. G. E. (2015). Smale flows on 'S POT.2' x 'S POT.1'. Ergodic Theory and Dynamical Systems, 35( 5), 1546-1581. doi:10.1017/etds.2015.2
    • NLM

      Rezende KA de, Manzoli Neto O, Ledesma GGE. Smale flows on 'S POT.2' x 'S POT.1' [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 5): 1546-1581.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1017/etds.2015.2
    • Vancouver

      Rezende KA de, Manzoli Neto O, Ledesma GGE. Smale flows on 'S POT.2' x 'S POT.1' [Internet]. Ergodic Theory and Dynamical Systems. 2015 ; 35( 5): 1546-1581.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1017/etds.2015.2
  • Source: Proceedings of the Edinburgh Mathematical Society. Unidades: ICMC, IME

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. Coincidences of fibrewise maps between sphere bundles over the circle. Proceedings of the Edinburgh Mathematical Society, v. 57, n. 3, p. 713-735, 2014Tradução . . Disponível em: http://dx.doi.org/10.1017/S0013091513000552. Acesso em: 03 out. 2022.
    • APA

      Gonçalves, D. L., Koschorke, U., Libardi, A. K. M., & Manzoli Neto, O. (2014). Coincidences of fibrewise maps between sphere bundles over the circle. Proceedings of the Edinburgh Mathematical Society, 57( 3), 713-735. doi:10.1017/S0013091513000552
    • NLM

      Gonçalves DL, Koschorke U, Libardi AKM, Manzoli Neto O. Coincidences of fibrewise maps between sphere bundles over the circle [Internet]. Proceedings of the Edinburgh Mathematical Society. 2014 ; 57( 3): 713-735.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1017/S0013091513000552
    • Vancouver

      Gonçalves DL, Koschorke U, Libardi AKM, Manzoli Neto O. Coincidences of fibrewise maps between sphere bundles over the circle [Internet]. Proceedings of the Edinburgh Mathematical Society. 2014 ; 57( 3): 713-735.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1017/S0013091513000552
  • Source: Homology, Homotopy and Applications. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÊMINA, Ligia Laís et al. Cellular decomposition and free resolution for split metacyclic spherical space forms. Homology, Homotopy and Applications, v. 15, n. 1, p. 253-278, 2013Tradução . . Disponível em: http://dx.doi.org/10.4310/HHA.2013.v15.n1.a13. Acesso em: 03 out. 2022.
    • APA

      Fêmina, L. L., Galves, A. P. T., Manzoli Neto, O., & Spreafico, M. F. (2013). Cellular decomposition and free resolution for split metacyclic spherical space forms. Homology, Homotopy and Applications, 15( 1), 253-278. doi:10.4310/HHA.2013.v15.n1.a13
    • NLM

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico MF. Cellular decomposition and free resolution for split metacyclic spherical space forms [Internet]. Homology, Homotopy and Applications. 2013 ; 15( 1): 253-278.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.4310/HHA.2013.v15.n1.a13
    • Vancouver

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico MF. Cellular decomposition and free resolution for split metacyclic spherical space forms [Internet]. Homology, Homotopy and Applications. 2013 ; 15( 1): 253-278.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.4310/HHA.2013.v15.n1.a13
  • Source: Painel. Conference title: Encontro Regional de Topologia. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÊMINA, Lígia Laís e GALVES, Ana Paula Tremura e MANZOLI NETO, Oziride. The Reidemeister torsion of metacyclic spherical space forms. 2013, Anais.. São Carlos: UFSCar, 2013. Disponível em: http://www.dm.ufscar.br/profs/ert2013/. Acesso em: 03 out. 2022.
    • APA

      Fêmina, L. L., Galves, A. P. T., & Manzoli Neto, O. (2013). The Reidemeister torsion of metacyclic spherical space forms. In Painel. São Carlos: UFSCar. Recuperado de http://www.dm.ufscar.br/profs/ert2013/
    • NLM

      Fêmina LL, Galves APT, Manzoli Neto O. The Reidemeister torsion of metacyclic spherical space forms [Internet]. Painel. 2013 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2013/
    • Vancouver

      Fêmina LL, Galves APT, Manzoli Neto O. The Reidemeister torsion of metacyclic spherical space forms [Internet]. Painel. 2013 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2013/
  • Source: Geometriae Dedicata. Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, GEOMETRIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANZOLI NETO, Oziride e MELO, T. de e SPREAFICO, Mauro Flávio. Cellular decomposition of quaternionic spherical space forms. Geometriae Dedicata, v. fe 2013, n. 1, p. 9-24, 2013Tradução . . Disponível em: http://dx.doi.org/10.1007/s10711-012-9714-4. Acesso em: 03 out. 2022.
    • APA

      Manzoli Neto, O., Melo, T. de, & Spreafico, M. F. (2013). Cellular decomposition of quaternionic spherical space forms. Geometriae Dedicata, fe 2013( 1), 9-24. doi:10.1007/s10711-012-9714-4
    • NLM

      Manzoli Neto O, Melo T de, Spreafico MF. Cellular decomposition of quaternionic spherical space forms [Internet]. Geometriae Dedicata. 2013 ; fe 2013( 1): 9-24.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1007/s10711-012-9714-4
    • Vancouver

      Manzoli Neto O, Melo T de, Spreafico MF. Cellular decomposition of quaternionic spherical space forms [Internet]. Geometriae Dedicata. 2013 ; fe 2013( 1): 9-24.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1007/s10711-012-9714-4
  • Source: Painel. Conference title: Encontro Regional de Topologia. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERNI, Jean Cerqueira e MANZOLI NETO, Oziride. A Wecken type theorem for the absolute degree and proper maps. 2013, Anais.. São Carlos: UFSCar, 2013. Disponível em: http://www.dm.ufscar.br/profs/ert2013/. Acesso em: 03 out. 2022.
    • APA

      Berni, J. C., & Manzoli Neto, O. (2013). A Wecken type theorem for the absolute degree and proper maps. In Painel. São Carlos: UFSCar. Recuperado de http://www.dm.ufscar.br/profs/ert2013/
    • NLM

      Berni JC, Manzoli Neto O. A Wecken type theorem for the absolute degree and proper maps [Internet]. Painel. 2013 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2013/
    • Vancouver

      Berni JC, Manzoli Neto O. A Wecken type theorem for the absolute degree and proper maps [Internet]. Painel. 2013 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2013/
  • Source: Palestra. Conference title: Encontro Regional de Topologia. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Ana Paula Tremura e FÊMINA, Lígia Laís e MANZOLI NETO, Oziride. The construction of fundamental domain of tetrahedral spherical space forms. 2013, Anais.. São Carlos: UFSCar, 2013. Disponível em: http://www.dm.ufscar.br/profs/ert2013/. Acesso em: 03 out. 2022.
    • APA

      Galves, A. P. T., Fêmina, L. L., & Manzoli Neto, O. (2013). The construction of fundamental domain of tetrahedral spherical space forms. In Palestra. São Carlos: UFSCar. Recuperado de http://www.dm.ufscar.br/profs/ert2013/
    • NLM

      Galves APT, Fêmina LL, Manzoli Neto O. The construction of fundamental domain of tetrahedral spherical space forms [Internet]. Palestra. 2013 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2013/
    • Vancouver

      Galves APT, Fêmina LL, Manzoli Neto O. The construction of fundamental domain of tetrahedral spherical space forms [Internet]. Palestra. 2013 ;[citado 2022 out. 03 ] Available from: http://www.dm.ufscar.br/profs/ert2013/
  • Source: Journal of Fixed Point Theory and Applications. Unidades: IME, ICMC

    Subjects: TOPOLOGIA-GEOMETRIA, HOMOTOPIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SPREAFICO, Mauro Flávio e MANZOLI NETO, Oziride. The Borsuk-Ulam Theorem for homotopy spherical space forms. Journal of Fixed Point Theory and Applications, v. 9, n. 2, p. 285-294, 2011Tradução . . Disponível em: http://dx.doi.org/10.1007/s11784-011-0049-9. Acesso em: 03 out. 2022.
    • APA

      Gonçalves, D. L., Spreafico, M. F., & Manzoli Neto, O. (2011). The Borsuk-Ulam Theorem for homotopy spherical space forms. Journal of Fixed Point Theory and Applications, 9( 2), 285-294. doi:10.1007/s11784-011-0049-9
    • NLM

      Gonçalves DL, Spreafico MF, Manzoli Neto O. The Borsuk-Ulam Theorem for homotopy spherical space forms [Internet]. Journal of Fixed Point Theory and Applications. 2011 ; 9( 2): 285-294.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1007/s11784-011-0049-9
    • Vancouver

      Gonçalves DL, Spreafico MF, Manzoli Neto O. The Borsuk-Ulam Theorem for homotopy spherical space forms [Internet]. Journal of Fixed Point Theory and Applications. 2011 ; 9( 2): 285-294.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1007/s11784-011-0049-9
  • Source: Topology and its Applications. Unidade: ICMC

    Subject: TOPOLOGIA-GEOMETRIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERTOLIM, Maria Alice et al. On the variations of the Betti numbers of regular levels of Morse flows. Topology and its Applications, v. 158, n. 6, p. 761-774, 2011Tradução . . Disponível em: http://dx.doi.org/10.1016/j.topol.2011.01.021. Acesso em: 03 out. 2022.
    • APA

      Bertolim, M. A., Rezende, K. A. de, Manzoli Neto, O., & Vago, G. M. (2011). On the variations of the Betti numbers of regular levels of Morse flows. Topology and its Applications, 158( 6), 761-774. doi:10.1016/j.topol.2011.01.021
    • NLM

      Bertolim MA, Rezende KA de, Manzoli Neto O, Vago GM. On the variations of the Betti numbers of regular levels of Morse flows [Internet]. Topology and its Applications. 2011 ; 158( 6): 761-774.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2011.01.021
    • Vancouver

      Bertolim MA, Rezende KA de, Manzoli Neto O, Vago GM. On the variations of the Betti numbers of regular levels of Morse flows [Internet]. Topology and its Applications. 2011 ; 158( 6): 761-774.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2011.01.021
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo e MANZOLI NETO, Oziride. Root problem for convenient maps. Topological Methods in Nonlinear Analysis, v. 36, n. 2, p. 327-352, 2010Tradução . . Acesso em: 03 out. 2022.
    • APA

      Fenille, M. C., & Manzoli Neto, O. (2010). Root problem for convenient maps. Topological Methods in Nonlinear Analysis, 36( 2), 327-352.
    • NLM

      Fenille MC, Manzoli Neto O. Root problem for convenient maps. Topological Methods in Nonlinear Analysis. 2010 ; 36( 2): 327-352.[citado 2022 out. 03 ]
    • Vancouver

      Fenille MC, Manzoli Neto O. Root problem for convenient maps. Topological Methods in Nonlinear Analysis. 2010 ; 36( 2): 327-352.[citado 2022 out. 03 ]
  • Unidade: ICMC

    Subjects: TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Versão PublicadaHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUCAS, Laércio Aparecido e MANZOLI NETO, Oziride e SAEKI, Osamu. Exteriors of codimension one embeddings of product of three spheres into spheres. . São Carlos: ICMC-USP. Disponível em: https://repositorio.usp.br/directbitstream/8be93f9a-3824-4120-bfde-7991ef6d6c2e/2131609.pdf. Acesso em: 03 out. 2022. , 2010
    • APA

      Lucas, L. A., Manzoli Neto, O., & Saeki, O. (2010). Exteriors of codimension one embeddings of product of three spheres into spheres. São Carlos: ICMC-USP. Recuperado de https://repositorio.usp.br/directbitstream/8be93f9a-3824-4120-bfde-7991ef6d6c2e/2131609.pdf
    • NLM

      Lucas LA, Manzoli Neto O, Saeki O. Exteriors of codimension one embeddings of product of three spheres into spheres [Internet]. 2010 ;[citado 2022 out. 03 ] Available from: https://repositorio.usp.br/directbitstream/8be93f9a-3824-4120-bfde-7991ef6d6c2e/2131609.pdf
    • Vancouver

      Lucas LA, Manzoli Neto O, Saeki O. Exteriors of codimension one embeddings of product of three spheres into spheres [Internet]. 2010 ;[citado 2022 out. 03 ] Available from: https://repositorio.usp.br/directbitstream/8be93f9a-3824-4120-bfde-7991ef6d6c2e/2131609.pdf
  • Source: Central European Journal of Mathematics. Unidade: ICMC

    Subject: TOPOLOGIA DIFERENCIAL

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo e MANZOLI NETO, Oziride. Strong surjectivity of maps from 2-complexes into the 2-sphere. Central European Journal of Mathematics, v. 8, n. 3, p. 421-429, 2010Tradução . . Disponível em: http://dx.doi.org/10.2478/s11533-010-031-6. Acesso em: 03 out. 2022.
    • APA

      Fenille, M. C., & Manzoli Neto, O. (2010). Strong surjectivity of maps from 2-complexes into the 2-sphere. Central European Journal of Mathematics, 8( 3), 421-429. doi:10.2478/s11533-010-031-6
    • NLM

      Fenille MC, Manzoli Neto O. Strong surjectivity of maps from 2-complexes into the 2-sphere [Internet]. Central European Journal of Mathematics. 2010 ; 8( 3): 421-429.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.2478/s11533-010-031-6
    • Vancouver

      Fenille MC, Manzoli Neto O. Strong surjectivity of maps from 2-complexes into the 2-sphere [Internet]. Central European Journal of Mathematics. 2010 ; 8( 3): 421-429.[citado 2022 out. 03 ] Available from: http://dx.doi.org/10.2478/s11533-010-031-6
  • Source: Fixed Point Theory and Applications. Unidade: ICMC

    Subject: TOPOLOGIA DIFERENCIAL

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo e MANZOLI NETO, Oziride. Minimal Nielsen root classes and roots of liftings. Fixed Point Theory and Applications, 2009Tradução . . Disponível em: http://www.hindawi.com/journals/fpta/2009/346519.abs.html. Acesso em: 03 out. 2022.
    • APA

      Fenille, M. C., & Manzoli Neto, O. (2009). Minimal Nielsen root classes and roots of liftings. Fixed Point Theory and Applications. Recuperado de http://www.hindawi.com/journals/fpta/2009/346519.abs.html
    • NLM

      Fenille MC, Manzoli Neto O. Minimal Nielsen root classes and roots of liftings [Internet]. Fixed Point Theory and Applications. 2009 ;[citado 2022 out. 03 ] Available from: http://www.hindawi.com/journals/fpta/2009/346519.abs.html
    • Vancouver

      Fenille MC, Manzoli Neto O. Minimal Nielsen root classes and roots of liftings [Internet]. Fixed Point Theory and Applications. 2009 ;[citado 2022 out. 03 ] Available from: http://www.hindawi.com/journals/fpta/2009/346519.abs.html

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022