Filters : "ICMC" "ICMC-SMA" Limpar

Filters



Refine with date range


  • In: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Funcionais Com Retardamento

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; GYÖRI, I; MESQUITA, Jaqueline Godoy; TABOAS, Placido Zoega. A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, New York, Springer, v. 32, n. 2, p. 605-614, 2020. Disponível em: < http://dx.doi.org/10.1007/s10884-019-09750-5 > DOI: 10.1007/s10884-019-09750-5.
    • APA

      Federson, M. C. A. B., Györi, I., Mesquita, J. G., & Taboas, P. Z. (2020). A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, 32( 2), 605-614. doi:10.1007/s10884-019-09750-5
    • NLM

      Federson MCAB, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.Available from: http://dx.doi.org/10.1007/s10884-019-09750-5
    • Vancouver

      Federson MCAB, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.Available from: http://dx.doi.org/10.1007/s10884-019-09750-5
  • In: Abstracts. Conference title: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    PrivateOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEHRER, Raquel; SOARES, Sérgio Henrique Monari. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. Anais.. São Carlos: ICMC-USP, 2020.Disponível em: .
    • APA

      Lehrer, R., & Soares, S. H. M. (2020). Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • NLM

      Lehrer R, Soares SHM. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • Vancouver

      Lehrer R, Soares SHM. Existence and concentration of positive solutions for a system of coupled saturable Schrödinger equations [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
  • In: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Invariantes, Sistemas Dinâmicos

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos; VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, San Marcos, Texas State University, v. 2020, n. 55, p. 1-19, 2020. Disponível em: < https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf >.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, 2020( 55), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
  • In: Abstracts. Conference title: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Equações Diferenciais Estocásticas

    PrivateOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; BONOTTO, Everaldo de Mello; COLLEGARI, R; FEDERSON, F. Stochastic differential equations via generalized ODEs and applications. Anais.. São Carlos: ICMC-USP, 2020.Disponível em: .
    • APA

      Federson, M. C. A. B., Bonotto, E. de M., Collegari, R., & Federson, F. (2020). Stochastic differential equations via generalized ODEs and applications. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • NLM

      Federson MCAB, Bonotto E de M, Collegari R, Federson F. Stochastic differential equations via generalized ODEs and applications [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • Vancouver

      Federson MCAB, Bonotto E de M, Collegari R, Federson F. Stochastic differential equations via generalized ODEs and applications [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
  • In: Abstracts. Conference title: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais Parabólicas

    PrivateOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes; CARVALHO, Alexandre Nolasco de; LI, Yanan; LUNA, Tito Luciano Mamani. A non-autonomous bifurcation problem for a non-local parabolic equation. Anais.. São Carlos: ICMC-USP, 2020.Disponível em: .
    • APA

      Moreira, E. M., Carvalho, A. N. de, Li, Y., & Luna, T. L. M. (2020). A non-autonomous bifurcation problem for a non-local parabolic equation. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • NLM

      Moreira EM, Carvalho AN de, Li Y, Luna TLM. A non-autonomous bifurcation problem for a non-local parabolic equation [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • Vancouver

      Moreira EM, Carvalho AN de, Li Y, Luna TLM. A non-autonomous bifurcation problem for a non-local parabolic equation [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
  • In: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: Teoria Dos Números, Geometria Diofantina, Geometria Finita

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins; COUTINHO, Mariana de Almeida Nery. On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola. Journal of Pure and Applied Algebra, Amsterdam, Elsevier, v. 224, n. Ja 2020, p. 239-249, 2020. Disponível em: < http://dx.doi.org/10.1016/j.jpaa.2019.05.005 > DOI: 10.1016/j.jpaa.2019.05.005.
    • APA

      Borges Filho, H. M., & Coutinho, M. de A. N. (2020). On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola. Journal of Pure and Applied Algebra, 224( Ja 2020), 239-249. doi:10.1016/j.jpaa.2019.05.005
    • NLM

      Borges Filho HM, Coutinho M de AN. On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola [Internet]. Journal of Pure and Applied Algebra. 2020 ; 224( Ja 2020): 239-249.Available from: http://dx.doi.org/10.1016/j.jpaa.2019.05.005
    • Vancouver

      Borges Filho HM, Coutinho M de AN. On some generalized Fermat curves and chords of an affinely regular polygon inscribed in a hyperbola [Internet]. Journal of Pure and Applied Algebra. 2020 ; 224( Ja 2020): 239-249.Available from: http://dx.doi.org/10.1016/j.jpaa.2019.05.005
  • In: Finite Fields and their Applications. Unidade: ICMC

    Subjects: Curvas Algébricas, Teoria De Galois

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins; FUKASAWA, Satoru. Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, San Diego, Academic Press, v. 61, n. Ja 2020, p. 1-8, 2020. Disponível em: < http://dx.doi.org/10.1016/j.ffa.2019.101579 > DOI: 10.1016/j.ffa.2019.101579.
    • APA

      Borges Filho, H. M., & Fukasawa, S. (2020). Galois points for double-Frobenius nonclassical curves. Finite Fields and their Applications, 61( Ja 2020), 1-8. doi:10.1016/j.ffa.2019.101579
    • NLM

      Borges Filho HM, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.Available from: http://dx.doi.org/10.1016/j.ffa.2019.101579
    • Vancouver

      Borges Filho HM, Fukasawa S. Galois points for double-Frobenius nonclassical curves [Internet]. Finite Fields and their Applications. 2020 ; 61( Ja 2020): 1-8.Available from: http://dx.doi.org/10.1016/j.ffa.2019.101579
  • In: European Journal of Applied Mathematics. Unidade: ICMC

    Subjects: Teoria Qualitativa, Sistemas Dinâmicos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume; OLIVEIRA, Regilene Delazari dos Santos; ZHAO, Yulin. On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, New York, Cambridge University Press, 2020. Disponível em: < https://doi.org/10.1017/S0956792520000145 > DOI: 10.1017/S0956792520000145.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Zhao, Y. (2020). On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics. doi:10.1017/S0956792520000145
    • NLM

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2020 ;Available from: https://doi.org/10.1017/S0956792520000145
    • Vancouver

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2020 ;Available from: https://doi.org/10.1017/S0956792520000145
  • In: Transactions of the American Mathematical Society. Unidade: ICMC

    Subjects: Singularidades, Curvas (geometria), Geometria Diferencial Afim

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEOLINDO-SILVA, Jorge Luiz; TARI, Farid. On the differential geometry of holomorphic plane curves. Transactions of the American Mathematical Society, Providence, AMS, 2020. Disponível em: < https://doi.org/10.1090/tran/8136 > DOI: 10.1090/tran/8136.
    • APA

      Deolindo-Silva, J. L., & Tari, F. (2020). On the differential geometry of holomorphic plane curves. Transactions of the American Mathematical Society. doi:10.1090/tran/8136
    • NLM

      Deolindo-Silva JL, Tari F. On the differential geometry of holomorphic plane curves [Internet]. Transactions of the American Mathematical Society. 2020 ;Available from: https://doi.org/10.1090/tran/8136
    • Vancouver

      Deolindo-Silva JL, Tari F. On the differential geometry of holomorphic plane curves [Internet]. Transactions of the American Mathematical Society. 2020 ;Available from: https://doi.org/10.1090/tran/8136
  • In: Journal of Fourier Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Séries De Fourier

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Paulo Leandro Dattori da; MEZIANI, A. A Gevrey differential complex on the torus. Journal of Fourier Analysis and Applications, New York, Springer, v. 26, n. 1, p. 1-25, 2020. Disponível em: < https://doi.org/10.1007/s00041-019-09713-w > DOI: 10.1007/s00041-019-09713-w.
    • APA

      Silva, P. L. D. da, & Meziani, A. (2020). A Gevrey differential complex on the torus. Journal of Fourier Analysis and Applications, 26( 1), 1-25. doi:10.1007/s00041-019-09713-w
    • NLM

      Silva PLD da, Meziani A. A Gevrey differential complex on the torus [Internet]. Journal of Fourier Analysis and Applications. 2020 ; 26( 1): 1-25.Available from: https://doi.org/10.1007/s00041-019-09713-w
    • Vancouver

      Silva PLD da, Meziani A. A Gevrey differential complex on the torus [Internet]. Journal of Fourier Analysis and Applications. 2020 ; 26( 1): 1-25.Available from: https://doi.org/10.1007/s00041-019-09713-w
  • In: Indiana University Mathematics Journal. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Atratores, Sistemas Dinâmicos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSCHI, Simone Mazzini; CARVALHO, Alexandre Nolasco de; PIMENTEL, Juliana Fernandes da Silva. Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, Bloomington, Indiana University, v. 69, n. 2, p. 657-683, 2020. Disponível em: < https://doi.org/10.1512/iumj.2020.69.7836 > DOI: 10.1512/iumj.2020.69.7836.
    • APA

      Bruschi, S. M., Carvalho, A. N. de, & Pimentel, J. F. da S. (2020). Limiting grow-up behavior for a one-parameter family of dissipative PDEs. Indiana University Mathematics Journal, 69( 2), 657-683. doi:10.1512/iumj.2020.69.7836
    • NLM

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.Available from: https://doi.org/10.1512/iumj.2020.69.7836
    • Vancouver

      Bruschi SM, Carvalho AN de, Pimentel JF da S. Limiting grow-up behavior for a one-parameter family of dissipative PDEs [Internet]. Indiana University Mathematics Journal. 2020 ; 69( 2): 657-683.Available from: https://doi.org/10.1512/iumj.2020.69.7836
  • In: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: Geometria Diferencial Clássica, Subvariedades

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHION, Sergio; FIGUEIREDO JUNIOR, Ruy Tojeiro de. Euclidean hypersurfaces with genuine conformal deformations in codimension two. Bulletin of the Brazilian Mathematical Society : New Series, Heidelberg, Springer, v. 51, n. 3, p. Se 2020, 2020. Disponível em: < https://doi.org/10.1007/s00574-019-00173-w > DOI: 10.1007/s00574-019-00173-w.
    • APA

      Chion, S., & Figueiredo Junior, R. T. de. (2020). Euclidean hypersurfaces with genuine conformal deformations in codimension two. Bulletin of the Brazilian Mathematical Society : New Series, 51( 3), Se 2020. doi:10.1007/s00574-019-00173-w
    • NLM

      Chion S, Figueiredo Junior RT de. Euclidean hypersurfaces with genuine conformal deformations in codimension two [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 3): Se 2020.Available from: https://doi.org/10.1007/s00574-019-00173-w
    • Vancouver

      Chion S, Figueiredo Junior RT de. Euclidean hypersurfaces with genuine conformal deformations in codimension two [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2020 ; 51( 3): Se 2020.Available from: https://doi.org/10.1007/s00574-019-00173-w
  • In: Algebras and Representation Theory. Unidade: ICMC

    Subjects: álgebra Diferencial, Anéis E álgebras Comutativos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARO-TUESTA, Napoleón; LEVCOVITZ, Daniel. Module structure of certain rings of differential operators. Algebras and Representation Theory, Dordrecht, Springer, v. 23, n. 4, p. 1637-1657, 2020. Disponível em: < https://doi.org/10.1007/s10468-019-09905-4 > DOI: 10.1007/s10468-019-09905-4.
    • APA

      Caro-Tuesta, N., & Levcovitz, D. (2020). Module structure of certain rings of differential operators. Algebras and Representation Theory, 23( 4), 1637-1657. doi:10.1007/s10468-019-09905-4
    • NLM

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.Available from: https://doi.org/10.1007/s10468-019-09905-4
    • Vancouver

      Caro-Tuesta N, Levcovitz D. Module structure of certain rings of differential operators [Internet]. Algebras and Representation Theory. 2020 ; 23( 4): 1637-1657.Available from: https://doi.org/10.1007/s10468-019-09905-4
  • In: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: Teoria Qualitativa, Equações Não Lineares, Sistemas Não Lineares

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C; OLIVEIRA, Regilene Delazari dos Santos; REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, New York, Springer, 2020. Disponível em: < https://doi.org/10.1007/s10884-020-09871-2 > DOI: 10.1007/s10884-020-09871-2.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2020). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09871-2
  • In: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Equações Diferenciais

    Available on 2021-04-01Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos; VALLS, Claudia. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, Springfield, AIMS, v. 25, n. 5, p. 1821-1834, 2020. Disponível em: < https://doi.org/10.3934/dcdsb.2020004 > DOI: 10.3934/dcdsb.2020004.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, 25( 5), 1821-1834. doi:10.3934/dcdsb.2020004
    • NLM

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.Available from: https://doi.org/10.3934/dcdsb.2020004
    • Vancouver

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.Available from: https://doi.org/10.3934/dcdsb.2020004
  • In: Abstracts. Conference title: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais, Operadores Lineares

    PrivateOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Anais.. São Carlos: ICMC-USP, 2020.Disponível em: .
    • APA

      Silva, E. R. da. (2020). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Abstracts. 2020 ;Available from: http://summer.icmc.usp.br/summers/summer20/pg_abstract.php
  • In: Journal of Computational and Applied Mathematics. Unidade: ICMC

    Subjects: Equações Integrais, Aproximação, Análise Harmônica Em Espaços Euclidianos, Operadores Integrais

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTRO, Mario Henrique de; JORDÃO, Thaís; PERON, Ana Paula. Super-exponential decay rates for eigenvalues and singular values of integral operators on the sphere. Journal of Computational and Applied Mathematics, Amsterdam, Elsevier, v. 364, n. Ja 2020, p. 1-11, 2020. Disponível em: < http://dx.doi.org/10.1016/j.cam.2019.06.050 > DOI: 10.1016/j.cam.2019.06.050.
    • APA

      Castro, M. H. de, Jordão, T., & Peron, A. P. (2020). Super-exponential decay rates for eigenvalues and singular values of integral operators on the sphere. Journal of Computational and Applied Mathematics, 364( Ja 2020), 1-11. doi:10.1016/j.cam.2019.06.050
    • NLM

      Castro MH de, Jordão T, Peron AP. Super-exponential decay rates for eigenvalues and singular values of integral operators on the sphere [Internet]. Journal of Computational and Applied Mathematics. 2020 ; 364( Ja 2020): 1-11.Available from: http://dx.doi.org/10.1016/j.cam.2019.06.050
    • Vancouver

      Castro MH de, Jordão T, Peron AP. Super-exponential decay rates for eigenvalues and singular values of integral operators on the sphere [Internet]. Journal of Computational and Applied Mathematics. 2020 ; 364( Ja 2020): 1-11.Available from: http://dx.doi.org/10.1016/j.cam.2019.06.050
  • In: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Teoria Do índice, Equações Diferenciais Funcionais, Equações Diferenciais Ordinárias, Teoria Qualitativa

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, Warszawa, Polska Akademia Nauk/Instytut Matematyczny, v. 250, p. 41-62, 2020. Disponível em: < https://doi.org/10.4064/fm700-8-2019 > DOI: 10.4064/fm700-8-2019.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2020). Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, 250, 41-62. doi:10.4064/fm700-8-2019
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.Available from: https://doi.org/10.4064/fm700-8-2019
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.Available from: https://doi.org/10.4064/fm700-8-2019
  • In: Annali di Matematica Pura ed Applicata. Unidade: ICMC

    Subjects: Geometria Diferencial

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANFIO, Fernando; FIGUEIREDO JUNIOR, Ruy Tojeiro de; VEKEN, Joeri Van der. Geometry of submanifolds with respect to ambient vector fields. Annali di Matematica Pura ed Applicata, Heidelberg, Springer, 2020. Disponível em: < https://doi.org/10.1007/s10231-020-00964-9 > DOI: 10.1007/s10231-020-00964-9.
    • APA

      Manfio, F., Figueiredo Junior, R. T. de, & Veken, J. V. der. (2020). Geometry of submanifolds with respect to ambient vector fields. Annali di Matematica Pura ed Applicata. doi:10.1007/s10231-020-00964-9
    • NLM

      Manfio F, Figueiredo Junior RT de, Veken JV der. Geometry of submanifolds with respect to ambient vector fields [Internet]. Annali di Matematica Pura ed Applicata. 2020 ;Available from: https://doi.org/10.1007/s10231-020-00964-9
    • Vancouver

      Manfio F, Figueiredo Junior RT de, Veken JV der. Geometry of submanifolds with respect to ambient vector fields [Internet]. Annali di Matematica Pura ed Applicata. 2020 ;Available from: https://doi.org/10.1007/s10231-020-00964-9
  • In: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Atratores

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; LANGA, José Antonio; ROBINSON, James C. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, Springfield, AIMS, v. 19, n. 4, p. 1997-2013, 2020. Disponível em: < https://doi.org/10.3934/cpaa.2020088 > DOI: 10.3934/cpaa.2020088.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Robinson, J. C. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Langa JA, Robinson JC. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.Available from: https://doi.org/10.3934/cpaa.2020088


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020