Filters : "ICMC" "ICMC-SMA" Limpar

Filters



Refine with date range


  • Source: Journal of Pure and Applied Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, COHOMOLOGIA, HOMOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de et al. Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, v. 227, n. 2, p. 1-17, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2022.107188. Acesso em: 27 set. 2022.
    • APA

      Freitas, T. H. de, Pérez, V. H. J., Miranda-Neto, C. B., & Schenzel, P. (2023). Generalized local duality, canonical modules, and prescribed bound on projective dimension. Journal of Pure and Applied Algebra, 227( 2), 1-17. doi:10.1016/j.jpaa.2022.107188
    • NLM

      Freitas TH de, Pérez VHJ, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
    • Vancouver

      Freitas TH de, Pérez VHJ, Miranda-Neto CB, Schenzel P. Generalized local duality, canonical modules, and prescribed bound on projective dimension [Internet]. Journal of Pure and Applied Algebra. 2023 ; 227( 2): 1-17.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2022.107188
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: ANÁLISE GLOBAL, ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, v. 28, n. Ja 2023, p. 426-448, 2023Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2022083. Acesso em: 27 set. 2022.
    • APA

      Carvalho, A. N. de, Rocha, L. R. N., Langa, J. A., & Obaya, R. (2023). Structure of non-autonomous attractors for a class of diffusively coupled ODE. Discrete and Continuous Dynamical Systems : Series B, 28( Ja 2023), 426-448. doi:10.3934/dcdsb.2022083
    • NLM

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2022 set. 27 ] Available from: https://doi.org/10.3934/dcdsb.2022083
    • Vancouver

      Carvalho AN de, Rocha LRN, Langa JA, Obaya R. Structure of non-autonomous attractors for a class of diffusively coupled ODE [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2023 ; 28( Ja 2023): 426-448.[citado 2022 set. 27 ] Available from: https://doi.org/10.3934/dcdsb.2022083
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA DAS SINGULARIDADES, DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE, VARIEDADES TOPOLÓGICAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty Abaroa de et al. Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis, 2022Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.054. Acesso em: 27 set. 2022.
    • APA

      Rezende, K. A. de, Grulha Júnior, N. de G., Lima, D. V. de S., & Zigart, M. A. de J. (2022). Gutierrez-Sotomayor flows on singular surfaces. Topological Methods in Nonlinear Analysis. doi:10.12775/TMNA.2021.054
    • NLM

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ;[citado 2022 set. 27 ] Available from: https://doi.org/10.12775/TMNA.2021.054
    • Vancouver

      Rezende KA de, Grulha Júnior N de G, Lima DV de S, Zigart MA de J. Gutierrez-Sotomayor flows on singular surfaces [Internet]. Topological Methods in Nonlinear Analysis. 2022 ;[citado 2022 set. 27 ] Available from: https://doi.org/10.12775/TMNA.2021.054
  • Source: Collectanea Mathematica. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, ÁLGEBRA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ, Victor Hugo Jorge e MIRANDA-NETO, Cleto Brasileiro. Homological aspects of derivation modules and critical case of the Herzog-Vasconcelos conjecture. Collectanea Mathematica, v. 73, n. 2, p. 203-219, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13348-021-00314-9. Acesso em: 27 set. 2022.
    • APA

      Pérez, V. H. J., & Miranda-Neto, C. B. (2022). Homological aspects of derivation modules and critical case of the Herzog-Vasconcelos conjecture. Collectanea Mathematica, 73( 2), 203-219. doi:10.1007/s13348-021-00314-9
    • NLM

      Pérez VHJ, Miranda-Neto CB. Homological aspects of derivation modules and critical case of the Herzog-Vasconcelos conjecture [Internet]. Collectanea Mathematica. 2022 ; 73( 2): 203-219.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s13348-021-00314-9
    • Vancouver

      Pérez VHJ, Miranda-Neto CB. Homological aspects of derivation modules and critical case of the Herzog-Vasconcelos conjecture [Internet]. Collectanea Mathematica. 2022 ; 73( 2): 203-219.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s13348-021-00314-9
  • Source: Bulletin of the Brazilian Mathematical Society : New Series. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, NÚMEROS COMPLEXOS, TEORIA ERGÓDICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESTEVEZ, Gabriela e BRANDÃO, Daniel Smania e YAMPOLSKY, Michael. Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, v. 53, n. 3, p. Se 2022, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00574-022-00295-8. Acesso em: 27 set. 2022.
    • APA

      Estevez, G., Brandão, D. S., & Yampolsky, M. (2022). Renormalization of analytic multicritical circle maps with bounded type rotation numbers. Bulletin of the Brazilian Mathematical Society : New Series, 53( 3), Se 2022. doi:10.1007/s00574-022-00295-8
    • NLM

      Estevez G, Brandão DS, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
    • Vancouver

      Estevez G, Brandão DS, Yampolsky M. Renormalization of analytic multicritical circle maps with bounded type rotation numbers [Internet]. Bulletin of the Brazilian Mathematical Society : New Series. 2022 ; 53( 3): Se 2022.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00574-022-00295-8
  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, v. 35, n. 2, p. 361-413, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13163-021-00398-8. Acesso em: 27 set. 2022.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, 35( 2), 361-413. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
  • Source: International Mathematics Research Notices. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, PROBLEMA DE DIRICHLET

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONHEURE, Denis et al. Nodal solutions for sublinear-type problems with Dirichlet boundary conditions. International Mathematics Research Notices, v. 2022, n. 5, p. 3760-3804, 2022Tradução . . Disponível em: https://doi.org/10.1093/imrn/rnaa233. Acesso em: 27 set. 2022.
    • APA

      Bonheure, D., Santos, E. M. dos, Parini, E., Tavares, H., & Weth, T. (2022). Nodal solutions for sublinear-type problems with Dirichlet boundary conditions. International Mathematics Research Notices, 2022( 5), 3760-3804. doi:10.1093/imrn/rnaa233
    • NLM

      Bonheure D, Santos EM dos, Parini E, Tavares H, Weth T. Nodal solutions for sublinear-type problems with Dirichlet boundary conditions [Internet]. International Mathematics Research Notices. 2022 ; 2022( 5): 3760-3804.[citado 2022 set. 27 ] Available from: https://doi.org/10.1093/imrn/rnaa233
    • Vancouver

      Bonheure D, Santos EM dos, Parini E, Tavares H, Weth T. Nodal solutions for sublinear-type problems with Dirichlet boundary conditions [Internet]. International Mathematics Research Notices. 2022 ; 2022( 5): 3760-3804.[citado 2022 set. 27 ] Available from: https://doi.org/10.1093/imrn/rnaa233
  • Source: IEEE Transactions on Information Theory. Unidade: ICMC

    Subject: CURVAS ALGÉBRICAS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins e CUNHA, Gregory Duran. Weierstrass pure gaps on curves with three distinguished points. IEEE Transactions on Information Theory, v. 68, n. 5, p. 3062-3069, 2022Tradução . . Disponível em: https://doi.org/10.1109/TIT.2021.3140195. Acesso em: 27 set. 2022.
    • APA

      Borges Filho, H. M., & Cunha, G. D. (2022). Weierstrass pure gaps on curves with three distinguished points. IEEE Transactions on Information Theory, 68( 5), 3062-3069. doi:10.1109/TIT.2021.3140195
    • NLM

      Borges Filho HM, Cunha GD. Weierstrass pure gaps on curves with three distinguished points [Internet]. IEEE Transactions on Information Theory. 2022 ; 68( 5): 3062-3069.[citado 2022 set. 27 ] Available from: https://doi.org/10.1109/TIT.2021.3140195
    • Vancouver

      Borges Filho HM, Cunha GD. Weierstrass pure gaps on curves with three distinguished points [Internet]. IEEE Transactions on Information Theory. 2022 ; 68( 5): 3062-3069.[citado 2022 set. 27 ] Available from: https://doi.org/10.1109/TIT.2021.3140195
  • Source: Results in Mathematics. Unidade: ICMC

    Subjects: OPERADORES INTEGRAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS DE 1ª ORDEM, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMPANA, Camilo e SILVA, Paulo Leandro Dattori da. Solvability in the large and boundary value problems for Mizohata type operators. Results in Mathematics, v. 77, n. 2, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00025-021-01568-2. Acesso em: 27 set. 2022.
    • APA

      Campana, C., & Silva, P. L. D. da. (2022). Solvability in the large and boundary value problems for Mizohata type operators. Results in Mathematics, 77( 2), 1-26. doi:10.1007/s00025-021-01568-2
    • NLM

      Campana C, Silva PLD da. Solvability in the large and boundary value problems for Mizohata type operators [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-26.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00025-021-01568-2
    • Vancouver

      Campana C, Silva PLD da. Solvability in the large and boundary value problems for Mizohata type operators [Internet]. Results in Mathematics. 2022 ; 77( 2): 1-26.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00025-021-01568-2
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da e FEDERSON, Márcia Cristina Anderson Braz e TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, v. 307, n. Ja 2022, p. 160-210, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.10.044. Acesso em: 27 set. 2022.
    • APA

      Silva, F. A. da, Federson, M. C. A. B., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson MCAB, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson MCAB, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.10.044
  • Source: Qualitative Theory of Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SÁNCHEZ-SÁNCHEZ, Iván e TORREGROSA, Joan. Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, v. 21, n. 1, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12346-021-00546-x. Acesso em: 27 set. 2022.
    • APA

      Oliveira, R. D. dos S., Sánchez-Sánchez, I., & Torregrosa, J. (2022). Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, 21( 1), 1-35. doi:10.1007/s12346-021-00546-x
    • NLM

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s12346-021-00546-x
    • Vancouver

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s12346-021-00546-x
  • Source: Journal of Evolution Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, APROXIMAÇÃO, SEMIGRUPOS DE OPERADORES LINEARES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de e SANTOS, Lucas Araújo. Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, v. 22, n. 2, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00028-022-00811-9. Acesso em: 27 set. 2022.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, & Santos, L. A. (2022). Well-posedness for some third-order evolution differential equations: a semigroup approach. Journal of Evolution Equations, 22( 2), 1-18. doi:10.1007/s00028-022-00811-9
    • NLM

      Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00028-022-00811-9
    • Vancouver

      Bezerra FDM, Carvalho AN de, Santos LA. Well-posedness for some third-order evolution differential equations: a semigroup approach [Internet]. Journal of Evolution Equations. 2022 ; 22( 2): 1-18.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00028-022-00811-9
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, DIFEOMORFISMOS, SISTEMAS DINÂMICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROCHA, Joás Elias dos Santos e TAHZIBI, Ali. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, v. 301, n. 1, p. 471-484, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-021-02925-1. Acesso em: 27 set. 2022.
    • APA

      Rocha, J. E. dos S., & Tahzibi, A. (2022). On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves. Mathematische Zeitschrift, 301( 1), 471-484. doi:10.1007/s00209-021-02925-1
    • NLM

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
    • Vancouver

      Rocha JE dos S, Tahzibi A. On the number of ergodic measures of maximal entropy for partially hyperbolic diffeomorphisms with compact center leaves [Internet]. Mathematische Zeitschrift. 2022 ; 301( 1): 471-484.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00209-021-02925-1
  • Source: Bulletin des Sciences Mathématiques. Unidade: ICMC

    Subject: ANÉIS E ÁLGEBRAS COMUTATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ, Victor Hugo Jorge e LIMA, Pedro Henrique Apoliano Albuquerque. Coefficient ideals of the fiber cone. Bulletin des Sciences Mathématiques, v. No 2022, p. 1-16, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.bulsci.2022.103191. Acesso em: 27 set. 2022.
    • APA

      Pérez, V. H. J., & Lima, P. H. A. A. (2022). Coefficient ideals of the fiber cone. Bulletin des Sciences Mathématiques, No 2022, 1-16. doi:10.1016/j.bulsci.2022.103191
    • NLM

      Pérez VHJ, Lima PHAA. Coefficient ideals of the fiber cone [Internet]. Bulletin des Sciences Mathématiques. 2022 ; No 2022 1-16.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.bulsci.2022.103191
    • Vancouver

      Pérez VHJ, Lima PHAA. Coefficient ideals of the fiber cone [Internet]. Bulletin des Sciences Mathématiques. 2022 ; No 2022 1-16.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.bulsci.2022.103191
  • Source: Journal of Singularities. Conference title: International Workshop on Real and Complex Singularities. Unidade: ICMC

    Subject: SINGULARIDADES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRASSELET, Jean Paul e GRULHA JÚNIOR, Nivaldo de Góes e BICH, Thuy Nguyen Thi. Local Euler obstruction, old and new, III. Journal of Singularities. Cambridge: Worldwide Center of Mathematics. Disponível em: https://doi.org/10.5427/jsing.2022.25e. Acesso em: 27 set. 2022. , 2022
    • APA

      Brasselet, J. P., Grulha Júnior, N. de G., & Bich, T. N. T. (2022). Local Euler obstruction, old and new, III. Journal of Singularities. Cambridge: Worldwide Center of Mathematics. doi:10.5427/jsing.2022.25e
    • NLM

      Brasselet JP, Grulha Júnior N de G, Bich TNT. Local Euler obstruction, old and new, III [Internet]. Journal of Singularities. 2022 ; 25 90-122.[citado 2022 set. 27 ] Available from: https://doi.org/10.5427/jsing.2022.25e
    • Vancouver

      Brasselet JP, Grulha Júnior N de G, Bich TNT. Local Euler obstruction, old and new, III [Internet]. Journal of Singularities. 2022 ; 25 90-122.[citado 2022 set. 27 ] Available from: https://doi.org/10.5427/jsing.2022.25e
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. First-order perturbation for multi-parameter center families. Journal of Differential Equations, v. 309, p. 291-310, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.035. Acesso em: 27 set. 2022.
    • APA

      Itikawa, J., Oliveira, R. D. dos S., & Torregrosa, J. (2022). First-order perturbation for multi-parameter center families. Journal of Differential Equations, 309, 291-310. doi:10.1016/j.jde.2021.11.035
    • NLM

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
    • Vancouver

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS, POLINÔMIOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões et al. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, v. 516, n. 1, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2022.126487. Acesso em: 27 set. 2022.
    • APA

      Barbosa, V. S., Gregori, P., Peron, A. P., & Porcu, E. (2022). Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 516( 1), 1-26. doi:10.1016/j.jmaa.2022.126487
    • NLM

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
    • Vancouver

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2022 set. 27 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
  • Source: Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SINGULARIDADES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRANDER, David e TARI, Farid. Wave maps and constant curvature surfaces: singularities and bifurcations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, v. XXIII, n. 1, p. 361-397, 2022Tradução . . Disponível em: https://doi.org/10.2422/2036-2145.202002_008. Acesso em: 27 set. 2022.
    • APA

      Brander, D., & Tari, F. (2022). Wave maps and constant curvature surfaces: singularities and bifurcations. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze, XXIII( 1), 361-397. doi:10.2422/2036-2145.202002_008
    • NLM

      Brander D, Tari F. Wave maps and constant curvature surfaces: singularities and bifurcations [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2022 ; XXIII( 1): 361-397.[citado 2022 set. 27 ] Available from: https://doi.org/10.2422/2036-2145.202002_008
    • Vancouver

      Brander D, Tari F. Wave maps and constant curvature surfaces: singularities and bifurcations [Internet]. Annali della Scuola Normale Superiore di Pisa, Classe di Scienze. 2022 ; XXIII( 1): 361-397.[citado 2022 set. 27 ] Available from: https://doi.org/10.2422/2036-2145.202002_008
  • Source: Nonlinearity. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES INTEGRAIS, SOLUÇÕES PERIÓDICAS, OPERADORES DIFERENCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz et al. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, v. 35, n. 6, p. 3118-3159, 2022Tradução . . Disponível em: https://doi.org/10.1088/1361-6544/ac6370. Acesso em: 27 set. 2022.
    • APA

      Federson, M. C. A. B., Grau, R., Mesquita, J. G., & Toon, E. (2022). Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs. Nonlinearity, 35( 6), 3118-3159. doi:10.1088/1361-6544/ac6370
    • NLM

      Federson MCAB, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2022 set. 27 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
    • Vancouver

      Federson MCAB, Grau R, Mesquita JG, Toon E. Permanence of equilibrium points in the basin of attraction and existence of periodic solutions for autonomous measure differential equations and dynamic equations on time scales via generalized ODEs [Internet]. Nonlinearity. 2022 ; 35( 6): 3118-3159.[citado 2022 set. 27 ] Available from: https://doi.org/10.1088/1361-6544/ac6370
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, GRUPOS ABELIANOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORGES FILHO, Herivelto Martins e FUKASAWA, Satoru. An elementary abelian p-cover of the Hermitian curve with many automorphisms. Mathematische Zeitschrift, v. 302, n. 2, p. 695-706, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00209-022-03083-8. Acesso em: 27 set. 2022.
    • APA

      Borges Filho, H. M., & Fukasawa, S. (2022). An elementary abelian p-cover of the Hermitian curve with many automorphisms. Mathematische Zeitschrift, 302( 2), 695-706. doi:10.1007/s00209-022-03083-8
    • NLM

      Borges Filho HM, Fukasawa S. An elementary abelian p-cover of the Hermitian curve with many automorphisms [Internet]. Mathematische Zeitschrift. 2022 ; 302( 2): 695-706.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00209-022-03083-8
    • Vancouver

      Borges Filho HM, Fukasawa S. An elementary abelian p-cover of the Hermitian curve with many automorphisms [Internet]. Mathematische Zeitschrift. 2022 ; 302( 2): 695-706.[citado 2022 set. 27 ] Available from: https://doi.org/10.1007/s00209-022-03083-8

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022