Filters : "ICMC" "Oliveira, Regilene Delazari dos Santos" Limpar

Filters



Refine with date range


  • Source: Qualitative Theory of Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SÁNCHEZ-SÁNCHEZ, Iván e TORREGROSA, Joan. Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, v. 21, n. 1, p. 1-35, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12346-021-00546-x. Acesso em: 02 out. 2022.
    • APA

      Oliveira, R. D. dos S., Sánchez-Sánchez, I., & Torregrosa, J. (2022). Simultaneous bifurcation of limit cycles and critical periods. Qualitative Theory of Dynamical Systems, 21( 1), 1-35. doi:10.1007/s12346-021-00546-x
    • NLM

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s12346-021-00546-x
    • Vancouver

      Oliveira RD dos S, Sánchez-Sánchez I, Torregrosa J. Simultaneous bifurcation of limit cycles and critical periods [Internet]. Qualitative Theory of Dynamical Systems. 2022 ; 21( 1): 1-35.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s12346-021-00546-x
  • Source: Revista Matemática Complutense. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, v. 35, n. 2, p. 361-413, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13163-021-00398-8. Acesso em: 02 out. 2022.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2022). Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials. Revista Matemática Complutense, 35( 2), 361-413. doi:10.1007/s13163-021-00398-8
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Characterization and bifurcation diagram of the family of quadratic differential systems with an invariant ellipse in terms of invariant polynomials [Internet]. Revista Matemática Complutense. 2022 ; 35( 2): 361-413.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s13163-021-00398-8
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKAWA, Jackson e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. First-order perturbation for multi-parameter center families. Journal of Differential Equations, v. 309, p. 291-310, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.035. Acesso em: 02 out. 2022.
    • APA

      Itikawa, J., Oliveira, R. D. dos S., & Torregrosa, J. (2022). First-order perturbation for multi-parameter center families. Journal of Differential Equations, 309, 291-310. doi:10.1016/j.jde.2021.11.035
    • NLM

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2022 out. 02 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
    • Vancouver

      Itikawa J, Oliveira RD dos S, Torregrosa J. First-order perturbation for multi-parameter center families [Internet]. Journal of Differential Equations. 2022 ; 309 291-310.[citado 2022 out. 02 ] Available from: https://doi.org/10.1016/j.jde.2021.11.035
  • Source: Differential Equations and Dynamical Systems. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran e LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12591-022-00604-z. Acesso em: 02 out. 2022.
    • APA

      Baldissera, M. D., Llibre, J., & Oliveira, R. D. dos S. (2022). Dynamics of a generalized rayleigh system. Differential Equations and Dynamical Systems. doi:10.1007/s12591-022-00604-z
    • NLM

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2022 ;[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
    • Vancouver

      Baldissera MD, Llibre J, Oliveira RD dos S. Dynamics of a generalized rayleigh system [Internet]. Differential Equations and Dynamical Systems. 2022 ;[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s12591-022-00604-z
  • Source: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SOLUÇÕES PERIÓDICAS, SISTEMAS DIFERENCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos. On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, v. 45, n. Ja 2022, p. 579-584, 2022Tradução . . Disponível em: https://doi.org/10.1002/mma.7798. Acesso em: 02 out. 2022.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2022). On the limit cycle of a Belousov-Zhabotinsky differential systems. Mathematical Methods in the Applied Sciences, 45( Ja 2022), 579-584. doi:10.1002/mma.7798
    • NLM

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2022 out. 02 ] Available from: https://doi.org/10.1002/mma.7798
    • Vancouver

      Llibre J, Oliveira RD dos S. On the limit cycle of a Belousov-Zhabotinsky differential systems [Internet]. Mathematical Methods in the Applied Sciences. 2022 ; 45( Ja 2022): 579-584.[citado 2022 out. 02 ] Available from: https://doi.org/10.1002/mma.7798
  • Source: European Journal of Applied Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e ZHAO, Yulin. On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, v. 32, n. 2, p. 317-336, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0956792520000145. Acesso em: 02 out. 2022.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Zhao, Y. (2021). On the birth and death of algebraic limit cycles in quadratic differential systems. European Journal of Applied Mathematics, 32( 2), 317-336. doi:10.1017/S0956792520000145
    • NLM

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2022 out. 02 ] Available from: https://doi.org/10.1017/S0956792520000145
    • Vancouver

      Llibre J, Oliveira RD dos S, Zhao Y. On the birth and death of algebraic limit cycles in quadratic differential systems [Internet]. European Journal of Applied Mathematics. 2021 ; 32( 2): 317-336.[citado 2022 out. 02 ] Available from: https://doi.org/10.1017/S0956792520000145
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C e OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, v. 33, n. 4, p. 1779-1821, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10884-020-09871-2. Acesso em: 02 out. 2022.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2021). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, 33( 4), 1779-1821. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33( 4): 1779-1821.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s10884-020-09871-2
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, INVARIANTES

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 45, p. 1-90, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.45. Acesso em: 02 out. 2022.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., Travaglini, A. M., & Valls, C. (2021). Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 45), 1-90. doi:10.14232/ejqtde.2021.1.45
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2022 out. 02 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM, Valls C. Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 45): 1-90.[citado 2022 out. 02 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.45
  • Unidade: ICMC

    Subjects: SISTEMAS DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, ESTABILIDADE ESTRUTURAL, INVARIANTES, CURVAS ALGÉBRICAS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho. Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses. 2021. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/. Acesso em: 02 out. 2022.
    • APA

      Mota, M. C. (2021). Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
    • NLM

      Mota MC. Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses [Internet]. 2021 ;[citado 2022 out. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
    • Vancouver

      Mota MC. Geometrical and topological investigation of some families of quadratic differential systems possessing saddle-nodes or invariant ellipses [Internet]. 2021 ;[citado 2022 out. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-18052021-121432/
  • Source: Nonlinear Analysis : Real World Applications. Unidade: ICMC

    Subjects: INVARIANTES, SISTEMAS DIFERENCIAIS, SISTEMAS DINÂMICOS, TEORIA QUALITATIVA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEZA-SARMIENTO, Ingrid Sofia e OLIVEIRA, Regilene Delazari dos Santos e SILVA, Paulo Ricardo da. Quadratic slow-fast systems on the plane. Nonlinear Analysis : Real World Applications, v. 60, p. 1-29, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.nonrwa.2020.103286. Acesso em: 02 out. 2022.
    • APA

      Meza-Sarmiento, I. S., Oliveira, R. D. dos S., & Silva, P. R. da. (2021). Quadratic slow-fast systems on the plane. Nonlinear Analysis : Real World Applications, 60, 1-29. doi:10.1016/j.nonrwa.2020.103286
    • NLM

      Meza-Sarmiento IS, Oliveira RD dos S, Silva PR da. Quadratic slow-fast systems on the plane [Internet]. Nonlinear Analysis : Real World Applications. 2021 ; 60 1-29.[citado 2022 out. 02 ] Available from: https://doi.org/10.1016/j.nonrwa.2020.103286
    • Vancouver

      Meza-Sarmiento IS, Oliveira RD dos S, Silva PR da. Quadratic slow-fast systems on the plane [Internet]. Nonlinear Analysis : Real World Applications. 2021 ; 60 1-29.[citado 2022 out. 02 ] Available from: https://doi.org/10.1016/j.nonrwa.2020.103286
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, TEORIA DA BIFURCAÇÃO, INVARIANTES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, v. 69, p. 1-52, 2021Tradução . . Disponível em: https://ejde.math.txstate.edu/. Acesso em: 02 out. 2022.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2021). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, 69, 1-52. Recuperado de https://ejde.math.txstate.edu/
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2022 out. 02 ] Available from: https://ejde.math.txstate.edu/
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2022 out. 02 ] Available from: https://ejde.math.txstate.edu/
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, ATRATORES, CAOS (SISTEMAS DINÂMICOS)

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho e OLIVEIRA, Regilene Delazari dos Santos. Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, v. 26, n. 3, p. 1653-1673, 2021Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2020177. Acesso em: 02 out. 2022.
    • APA

      Mota, M. C., & Oliveira, R. D. dos S. (2021). Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, 26( 3), 1653-1673. doi:10.3934/dcdsb.2020177
    • NLM

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2022 out. 02 ] Available from: https://doi.org/10.3934/dcdsb.2020177
    • Vancouver

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.[citado 2022 out. 02 ] Available from: https://doi.org/10.3934/dcdsb.2020177
  • Source: Electronic Journal of Qualitative Theory of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA QUALITATIVA

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e SCHLOMIUK, Dana e TRAVAGLINI, Ana Maria. Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, v. 2021, n. 6, p. 1-56, 2021Tradução . . Disponível em: https://doi.org/10.14232/ejqtde.2021.1.6. Acesso em: 02 out. 2022.
    • APA

      Oliveira, R. D. dos S., Schlomiuk, D., & Travaglini, A. M. (2021). Geometry and integrability of quadratic systems with invariant hyperbolas. Electronic Journal of Qualitative Theory of Differential Equations, 2021( 6), 1-56. doi:10.14232/ejqtde.2021.1.6
    • NLM

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2022 out. 02 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
    • Vancouver

      Oliveira RD dos S, Schlomiuk D, Travaglini AM. Geometry and integrability of quadratic systems with invariant hyperbolas [Internet]. Electronic Journal of Qualitative Theory of Differential Equations. 2021 ; 2021( 6): 1-56.[citado 2022 out. 02 ] Available from: https://doi.org/10.14232/ejqtde.2021.1.6
  • Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, SISTEMAS DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BALDISSERA, Maíra Duran. Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado. 2020. Dissertação (Mestrado) – Universidade de São Paulo, São Carlos, 2020. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/. Acesso em: 02 out. 2022.
    • APA

      Baldissera, M. D. (2020). Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado (Dissertação (Mestrado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/
    • NLM

      Baldissera MD. Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado [Internet]. 2020 ;[citado 2022 out. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/
    • Vancouver

      Baldissera MD. Integrabilidade em sistemas planares e existência de ciclos limites para o sistema de Rayleigh generalizado [Internet]. 2020 ;[citado 2022 out. 02 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-09112020-185555/
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, v. 2020, n. 55, p. 1-19, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf. Acesso em: 02 out. 2022.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, 2020( 55), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2022 out. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2022 out. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
  • Unidades: FFCLRP, ICMC

    Subjects: EVENTOS, CURADORIA, MATEMÁTICA, SISTEMAS DINÂMICOS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      Virtual Workshop on Dynamical Systems 2020. . [Ribeirão Preto]: FFCLRP-USP. Disponível em: https://sites.google.com/view/osd2020virtual/. Acesso em: 02 out. 2022. , 2020
    • APA

      Virtual Workshop on Dynamical Systems 2020. (2020). Virtual Workshop on Dynamical Systems 2020. [Ribeirão Preto]: FFCLRP-USP. Recuperado de https://sites.google.com/view/osd2020virtual/
    • NLM

      Virtual Workshop on Dynamical Systems 2020 [Internet]. 2020 ;[citado 2022 out. 02 ] Available from: https://sites.google.com/view/osd2020virtual/
    • Vancouver

      Virtual Workshop on Dynamical Systems 2020 [Internet]. 2020 ;[citado 2022 out. 02 ] Available from: https://sites.google.com/view/osd2020virtual/
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    Versão AceitaOnline source accessOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, v. 25, n. 5, p. 1821-1834, 2020Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2021157. Acesso em: 02 out. 2022.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, 25( 5), 1821-1834. doi:10.3934/dcdsb.2020004
    • NLM

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.[citado 2022 out. 02 ] Available from: https://doi.org/10.3934/dcdsb.2021157
    • Vancouver

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.[citado 2022 out. 02 ] Available from: https://doi.org/10.3934/dcdsb.2021157
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DIFERENCIAIS LINEARES, ESPAÇOS SIMÉTRICOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Limit cycles for two classes of control piecewise linear differential systems. São Paulo Journal of Mathematical Sciences, v. 14, n. 1, p. 49-65, 2020Tradução . . Disponível em: https://doi.org/10.1007/s40863-020-00163-7. Acesso em: 02 out. 2022.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2020). Limit cycles for two classes of control piecewise linear differential systems. São Paulo Journal of Mathematical Sciences, 14( 1), 49-65. doi:10.1007/s40863-020-00163-7
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 1): 49-65.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s40863-020-00163-7
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Limit cycles for two classes of control piecewise linear differential systems [Internet]. São Paulo Journal of Mathematical Sciences. 2020 ; 14( 1): 49-65.[citado 2022 out. 02 ] Available from: https://doi.org/10.1007/s40863-020-00163-7
  • Source: Nonlinear Analysis. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, SISTEMAS DINÂMICOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa e FERNANDES, Wilker e OLIVEIRA, Regilene Delazari dos Santos. Symmetric centers on planar cubic differential systems. Nonlinear Analysis, v. 197, p. 1-14, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.na.2020.111868. Acesso em: 02 out. 2022.
    • APA

      Dukaric, M., Fernandes, W., & Oliveira, R. D. dos S. (2020). Symmetric centers on planar cubic differential systems. Nonlinear Analysis, 197, 1-14. doi:10.1016/j.na.2020.111868
    • NLM

      Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.[citado 2022 out. 02 ] Available from: https://doi.org/10.1016/j.na.2020.111868
    • Vancouver

      Dukaric M, Fernandes W, Oliveira RD dos S. Symmetric centers on planar cubic differential systems [Internet]. Nonlinear Analysis. 2020 ; 197 1-14.[citado 2022 out. 02 ] Available from: https://doi.org/10.1016/j.na.2020.111868
  • Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, INVARIANTES, SISTEMAS DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Camila Aparecida Benedito Rodrigues de. Invariant curves on differential systems defined in Rn, n ≥ 2. 2019. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2019. Disponível em: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/. Acesso em: 02 out. 2022.
    • APA

      Lima, C. A. B. R. de. (2019). Invariant curves on differential systems defined in Rn, n ≥ 2 (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/
    • NLM

      Lima CABR de. Invariant curves on differential systems defined in Rn, n ≥ 2 [Internet]. 2019 ;[citado 2022 out. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/
    • Vancouver

      Lima CABR de. Invariant curves on differential systems defined in Rn, n ≥ 2 [Internet]. 2019 ;[citado 2022 out. 02 ] Available from: http://www.teses.usp.br/teses/disponiveis/55/55135/tde-27032019-105434/

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022