Source: Energies. Unidade: EESC
Subjects: APRENDIZADO COMPUTACIONAL, BATERIAS ELÉTRICAS, APRENDIZAGEM PROFUNDA, INTERNET DAS COISAS, ENGENHARIA ELÉTRICA
ABNT
SYLVESTRIN, Giovane Ronei et al. State of the art in electric batteries’ state-of-health (SoH) estimation with machine learning: a review. Energies, v. 18, n. 3, p. 1-77, 2025Tradução . . Disponível em: https://dx.doi.org/10.3390/en18030746. Acesso em: 20 maio 2025.APA
Sylvestrin, G. R., Maciel, J. N., Amorim, M. L. M., Carmo, J. P. P. do, Afonso, J. A., Lopes, S. F., & Ando Junior, O. H. (2025). State of the art in electric batteries’ state-of-health (SoH) estimation with machine learning: a review. Energies, 18( 3), 1-77. doi:10.3390/en18030746NLM
Sylvestrin GR, Maciel JN, Amorim MLM, Carmo JPP do, Afonso JA, Lopes SF, Ando Junior OH. State of the art in electric batteries’ state-of-health (SoH) estimation with machine learning: a review [Internet]. Energies. 2025 ; 18( 3): 1-77.[citado 2025 maio 20 ] Available from: https://dx.doi.org/10.3390/en18030746Vancouver
Sylvestrin GR, Maciel JN, Amorim MLM, Carmo JPP do, Afonso JA, Lopes SF, Ando Junior OH. State of the art in electric batteries’ state-of-health (SoH) estimation with machine learning: a review [Internet]. Energies. 2025 ; 18( 3): 1-77.[citado 2025 maio 20 ] Available from: https://dx.doi.org/10.3390/en18030746