Filtros : "EEL" "Chandel, Anuj Kumar" Limpar

Filtros



Refine with date range


  • Source: Green Energy and Technology. Unidade: EEL

    Subjects: BIOTECNOLOGIA, PATENTE DE INVENÇÃO, PATENTE, PROPRIEDADE INTELECTUAL, PRODUÇÃO CIENTÍFICA, DIREITO AUTORAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLUSSÁ, Fernanda Antonia Josefa et al. Critical Factors in Intellectual Property Creation, Protection, and Commercialization Management Process in Biotechnology. Green Energy and Technology, p. 345-363, 2024Tradução . . Disponível em: https://doi.org/10.1007/978-3-031-51601-6_13. Acesso em: 05 out. 2024.
    • APA

      Llussá, F. A. J., Verma, S., Chandel, A. K., & Andrade, H. de S. (2024). Critical Factors in Intellectual Property Creation, Protection, and Commercialization Management Process in Biotechnology. Green Energy and Technology, 345-363. doi:10.1007/978-3-031-51601-6_13
    • NLM

      Llussá FAJ, Verma S, Chandel AK, Andrade H de S. Critical Factors in Intellectual Property Creation, Protection, and Commercialization Management Process in Biotechnology [Internet]. Green Energy and Technology. 2024 ;345-363.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/978-3-031-51601-6_13
    • Vancouver

      Llussá FAJ, Verma S, Chandel AK, Andrade H de S. Critical Factors in Intellectual Property Creation, Protection, and Commercialization Management Process in Biotechnology [Internet]. Green Energy and Technology. 2024 ;345-363.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/978-3-031-51601-6_13
  • Source: Food research international. Unidades: EEL, BIOTECNOLOGIA

    Subjects: BIOTECNOLOGIA, SUSTENTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Samara Cardoso et al. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food research international, v. 166, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.foodres.2023.112596. Acesso em: 05 out. 2024.
    • APA

      Alves, S. C., Ruiz, E. D., Lisboa, B., Sharma, M., Mussatto, S. I., Thakur, V. K., et al. (2023). Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world. Food research international, 166, 1-12. doi:10.1016/j.foodres.2023.112596
    • NLM

      Alves SC, Ruiz ED, Lisboa B, Sharma M, Mussatto SI, Thakur VK, Kalaskar DM, Gupta VK, Chandel AK. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world [Internet]. Food research international. 2023 ;166 1-12.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.foodres.2023.112596
    • Vancouver

      Alves SC, Ruiz ED, Lisboa B, Sharma M, Mussatto SI, Thakur VK, Kalaskar DM, Gupta VK, Chandel AK. Microbial meat: A sustainable vegan protein source produced from agri-waste to feed the world [Internet]. Food research international. 2023 ;166 1-12.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.foodres.2023.112596
  • Source: Preparative biochemistry & biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VIEIRA, Matheus Maitan et al. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification. Preparative biochemistry & biotechnology, v. 53, n. 10, p. 1-7, 2023Tradução . . Disponível em: https://doi.org/10.1080/10826068.2023.2279109. Acesso em: 05 out. 2024.
    • APA

      Vieira, M. M., Valadares, F. de L., Mendoza, J. A. V., Silva, S. S. da, Segato, F., & Chandel, A. K. (2023). Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification. Preparative biochemistry & biotechnology, 53( 10), 1-7. doi:10.1080/10826068.2023.2279109
    • NLM

      Vieira MM, Valadares F de L, Mendoza JAV, Silva SS da, Segato F, Chandel AK. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification [Internet]. Preparative biochemistry & biotechnology. 2023 ;53( 10): 1-7.[citado 2024 out. 05 ] Available from: https://doi.org/10.1080/10826068.2023.2279109
    • Vancouver

      Vieira MM, Valadares F de L, Mendoza JAV, Silva SS da, Segato F, Chandel AK. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification [Internet]. Preparative biochemistry & biotechnology. 2023 ;53( 10): 1-7.[citado 2024 out. 05 ] Available from: https://doi.org/10.1080/10826068.2023.2279109
  • Source: Critical reviews in biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARORA, Richa et al. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Critical reviews in biotechnology, v. 43, n. 7, p. 1-18, 2023Tradução . . Disponível em: https://doi.org/10.1080/07388551.2022.2151409. Acesso em: 05 out. 2024.
    • APA

      Arora, R., Singh, P., Sarangi, P. K., Kumar, S., & Chandel, A. K. (2023). A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions. Critical reviews in biotechnology, 43( 7), 1-18. doi:10.1080/07388551.2022.2151409
    • NLM

      Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions [Internet]. Critical reviews in biotechnology. 2023 ;43( 7): 1-18.[citado 2024 out. 05 ] Available from: https://doi.org/10.1080/07388551.2022.2151409
    • Vancouver

      Arora R, Singh P, Sarangi PK, Kumar S, Chandel AK. A critical assessment on scalable technologies using high solids loadings in lignocellulose biorefinery: challenges and solutions [Internet]. Critical reviews in biotechnology. 2023 ;43( 7): 1-18.[citado 2024 out. 05 ] Available from: https://doi.org/10.1080/07388551.2022.2151409
  • Source: Biotechnology advances. Unidade: EEL

    Subjects: BIOTECNOLOGIA, IMUNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Cristiano E. Rodrigues et al. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnology advances, v. 68, n. art. 108209-17, p. 1-15, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.biotechadv.2023.108209. Acesso em: 05 out. 2024.
    • APA

      Reis, C. E. R., Milessi, T. S., Ramos, M. D. N., Singh, A. K., Mohanakrishna, G., Aminabhavi, T. M., et al. (2023). Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnology advances, 68( art. 108209-17), 1-15. doi:10.1016/j.biotechadv.2023.108209
    • NLM

      Reis CER, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications [Internet]. Biotechnology advances. 2023 ;68( art. 108209-17): 1-15.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.biotechadv.2023.108209
    • Vancouver

      Reis CER, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications [Internet]. Biotechnology advances. 2023 ;68( art. 108209-17): 1-15.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.biotechadv.2023.108209
  • Source: Food research international. Unidade: EEL

    Subjects: BIOTECNOLOGIA, FERMENTAÇÃO ACÉTICA, FERMENTAÇÃO ALCOÓLICA, MICROBIOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARORA, Richa e CHANDEL, Anuj Kumar. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome. Food research international, v. 173, n. art. 13425, p. 1-12, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.foodres.2023.113425. Acesso em: 05 out. 2024.
    • APA

      Arora, R., & Chandel, A. K. (2023). Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome. Food research international, 173( art. 13425), 1-12. doi:10.1016/j.foodres.2023.113425
    • NLM

      Arora R, Chandel AK. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome [Internet]. Food research international. 2023 ;173( art. 13425): 1-12.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.foodres.2023.113425
    • Vancouver

      Arora R, Chandel AK. Unlocking the potential of low FODMAPs sourdough technology for management of irritable bowel syndrome [Internet]. Food research international. 2023 ;173( art. 13425): 1-12.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.foodres.2023.113425
  • Source: Membranes. Unidade: EEL

    Subjects: BIOTECNOLOGIA, RESÍDUOS AGRÍCOLAS, POLPA, PAPEL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WORKU, L. A. et al. Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication. Membranes, v. 13, n. 2, p. 1-17, 2023Tradução . . Disponível em: https://doi.org/10.3390/membranes13020228. Acesso em: 05 out. 2024.
    • APA

      Worku, L. A., Bachheti, A., Bachheti, R. K., Reis, C. E. R., & Chandel, A. K. (2023). Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication. Membranes, 13( 2), 1-17. doi:10.3390/membranes13020228
    • NLM

      Worku LA, Bachheti A, Bachheti RK, Reis CER, Chandel AK. Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication [Internet]. Membranes. 2023 ;13( 2): 1-17.[citado 2024 out. 05 ] Available from: https://doi.org/10.3390/membranes13020228
    • Vancouver

      Worku LA, Bachheti A, Bachheti RK, Reis CER, Chandel AK. Agricultural Residues as Raw Materials for Pulp and Paper Production: Overview and Applications on Membrane Fabrication [Internet]. Membranes. 2023 ;13( 2): 1-17.[citado 2024 out. 05 ] Available from: https://doi.org/10.3390/membranes13020228
  • Source: Sustainability. Unidade: EEL

    Subjects: BIOTECNOLOGIA, SUSTENTABILIDADE, MUDANÇA CLIMÁTICA, MEIO AMBIENTE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PRAMANIK, Atreyi et al. Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals. Sustainability, v. 15, n. art. 7578, p. 1-19, 2023Tradução . . Disponível em: https://doi.org/10.3390/su15097578. Acesso em: 05 out. 2024.
    • APA

      Pramanik, A., Sinha, A., Chaubey, K. K., Hariharan, S., Dayal, D., Bachheti, R. K., et al. (2023). Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals. Sustainability, 15( art. 7578), 1-19. doi:10.3390/su15097578
    • NLM

      Pramanik A, Sinha A, Chaubey KK, Hariharan S, Dayal D, Bachheti RK, Bachheti A, Chandel AK. Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals [Internet]. Sustainability. 2023 ;15( art. 7578): 1-19.[citado 2024 out. 05 ] Available from: https://doi.org/10.3390/su15097578
    • Vancouver

      Pramanik A, Sinha A, Chaubey KK, Hariharan S, Dayal D, Bachheti RK, Bachheti A, Chandel AK. Second-Generation Bio-Fuels: Strategies for Employing Degraded Land for Climate Change Mitigation Meeting United Nation-Sustainable Development Goals [Internet]. Sustainability. 2023 ;15( art. 7578): 1-19.[citado 2024 out. 05 ] Available from: https://doi.org/10.3390/su15097578
  • Source: Biomass conversion and biorefinery. Unidade: EEL

    Subjects: CHLORELLA, BIOQUÍMICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAGLIAFERRO, Gerônimo Virgnio et al. Effect of nitrogen concentration on the production and composition of Chlorella minutissima biomass in a batch bubble-tank photobioreactor. Biomass conversion and biorefinery, v. 13, p. 1-11, 2023Tradução . . Disponível em: https://doi.org/10.1007/s13399-023-04523-z. Acesso em: 05 out. 2024.
    • APA

      Tagliaferro, G. V., Izario Filho, H. J., Chandel, A. K., Silva, S. S. da, Silva, M. B., & Santos, J. C. dos. (2023). Effect of nitrogen concentration on the production and composition of Chlorella minutissima biomass in a batch bubble-tank photobioreactor. Biomass conversion and biorefinery, 13, 1-11. doi:10.1007/s13399-023-04523-z
    • NLM

      Tagliaferro GV, Izario Filho HJ, Chandel AK, Silva SS da, Silva MB, Santos JC dos. Effect of nitrogen concentration on the production and composition of Chlorella minutissima biomass in a batch bubble-tank photobioreactor [Internet]. Biomass conversion and biorefinery. 2023 ;13 1-11.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/s13399-023-04523-z
    • Vancouver

      Tagliaferro GV, Izario Filho HJ, Chandel AK, Silva SS da, Silva MB, Santos JC dos. Effect of nitrogen concentration on the production and composition of Chlorella minutissima biomass in a batch bubble-tank photobioreactor [Internet]. Biomass conversion and biorefinery. 2023 ;13 1-11.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/s13399-023-04523-z
  • Source: BioEnergy Research. Unidades: EEL, IFSC

    Subjects: ETANOL, SACARIFICAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HANS, Meenu et al. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization. BioEnergy Research, v. 16, p. 416-434, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12155-022-10474-6. Acesso em: 05 out. 2024.
    • APA

      Hans, M., Pellegrini, V. de O. A., Filgueiras, J. G., Azevêdo, E. R. de, Guimarães, F. E. G., Chandel, A. K., et al. (2022). Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization. BioEnergy Research, 16, 416-434. doi:10.1007/s12155-022-10474-6
    • NLM

      Hans M, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Chadha BS, Kumar S. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization [Internet]. BioEnergy Research. 2022 ;16 416-434.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/s12155-022-10474-6
    • Vancouver

      Hans M, Pellegrini V de OA, Filgueiras JG, Azevêdo ER de, Guimarães FEG, Chandel AK, Chadha BS, Kumar S. Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization [Internet]. BioEnergy Research. 2022 ;16 416-434.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/s12155-022-10474-6
  • Source: Biomass conversion and biorefinery. Unidade: EEL

    Assunto: GESTÃO AMBIENTAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUPTA, Rishi et al. Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects. Biomass conversion and biorefinery, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1007/s13399-022-02552-8. Acesso em: 05 out. 2024.
    • APA

      Gupta, R., Mishra, A., Thirupathaiah, Y., & Chandel, A. K. (2022). Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects. Biomass conversion and biorefinery, 1-24. doi:10.1007/s13399-022-02552-8
    • NLM

      Gupta R, Mishra A, Thirupathaiah Y, Chandel AK. Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects [Internet]. Biomass conversion and biorefinery. 2022 ;1-24.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/s13399-022-02552-8
    • Vancouver

      Gupta R, Mishra A, Thirupathaiah Y, Chandel AK. Biochemical conversion of CO2 in fuels and chemicals: status, innovation, and industrial aspects [Internet]. Biomass conversion and biorefinery. 2022 ;1-24.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/s13399-022-02552-8
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KUMAR, Deepak e CHANDEL, Anuj Kumar e SINGH, Lakhveer. Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 312-326. Disponível em: https://doi.org/10.1002/9781119735984.ch13. Acesso em: 05 out. 2024.
    • APA

      Kumar, D., Chandel, A. K., & Singh, L. (2022). Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol. In Lignocellulose Bioconversion Through White Biotechnology (p. 312-326). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch13
    • NLM

      Kumar D, Chandel AK, Singh L. Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 312-326.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch13
    • Vancouver

      Kumar D, Chandel AK, Singh L. Techno-economic Analysis of Bioconversion of Woody Biomass to Ethanol [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 312-326.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch13
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHANDEL, Anuj Kumar et al. White Biotechnology: Impeccable Role in Sustainable Bio-Economy. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 1-17. Disponível em: https://doi.org/10.1002/9781119735984.ch1. Acesso em: 05 out. 2024.
    • APA

      Chandel, A. K., Ascencio, J. J., Singh, A. K., Hilares, R. T., Ramos, L., Gupta, R., et al. (2022). White Biotechnology: Impeccable Role in Sustainable Bio-Economy. In Lignocellulose Bioconversion Through White Biotechnology (p. 1-17). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch1
    • NLM

      Chandel AK, Ascencio JJ, Singh AK, Hilares RT, Ramos L, Gupta R, Thirupathaiah Y, Jagavati S. White Biotechnology: Impeccable Role in Sustainable Bio-Economy [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 1-17.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch1
    • Vancouver

      Chandel AK, Ascencio JJ, Singh AK, Hilares RT, Ramos L, Gupta R, Thirupathaiah Y, Jagavati S. White Biotechnology: Impeccable Role in Sustainable Bio-Economy [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 1-17.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch1
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAUDEL, Henrique M et al. Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 289-310. Disponível em: https://doi.org/10.1002/9781119735984.ch12. Acesso em: 05 out. 2024.
    • APA

      Baudel, H. M., Rodrigues, D. M., Diebold, E., & Chandel, A. K. (2022). Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles. In Lignocellulose Bioconversion Through White Biotechnology (p. 289-310). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch12
    • NLM

      Baudel HM, Rodrigues DM, Diebold E, Chandel AK. Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 289-310.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch12
    • Vancouver

      Baudel HM, Rodrigues DM, Diebold E, Chandel AK. Scale-up Process Challenges in Lignocellulosic Biomass Conversion and Possible Solutions to Overcome the Hurdles [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 289-310.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch12
  • Source: Chemical engineering journal. Unidade: EEL

    Subjects: BIOTECNOLOGIA, CELULOSE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REIS, Cristiano E. Rodrigues et al. Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries. Chemical engineering journal, v. 451, p. 138690-138700, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cej.2022.138690. Acesso em: 05 out. 2024.
    • APA

      Reis, C. E. R., Libardi Junior, N., Bento, H. B. S., Carvalho, A. K. F. de, Vandenberghe, L. P. de S., Soccol, C. R., et al. (2022). Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries. Chemical engineering journal, 451, 138690-138700. doi:10.1016/j.cej.2022.138690
    • NLM

      Reis CER, Libardi Junior N, Bento HBS, Carvalho AKF de, Vandenberghe LP de S, Soccol CR, Aminabhavi TM, Chandel AK. Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries [Internet]. Chemical engineering journal. 2022 ;451 138690-138700.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.cej.2022.138690
    • Vancouver

      Reis CER, Libardi Junior N, Bento HBS, Carvalho AKF de, Vandenberghe LP de S, Soccol CR, Aminabhavi TM, Chandel AK. Process strategies to reduce cellulase enzyme loading for renewable sugar production in biorefineries [Internet]. Chemical engineering journal. 2022 ;451 138690-138700.[citado 2024 out. 05 ] Available from: https://doi.org/10.1016/j.cej.2022.138690
  • Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHANDEL, Anuj Kumar e FELIPE, Maria das Gracas de Almeida. Current Advances in Biotechnological Production of Xylitol. . [S.l.]: Springer Cham. Disponível em: https://doi.org/10.1007/978-3-031-04942-2. Acesso em: 05 out. 2024. , 2022
    • APA

      Chandel, A. K., & Felipe, M. das G. de A. (2022). Current Advances in Biotechnological Production of Xylitol. Springer Cham. doi:10.1007/978-3-031-04942-2
    • NLM

      Chandel AK, Felipe M das G de A. Current Advances in Biotechnological Production of Xylitol [Internet]. 2022 ;[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/978-3-031-04942-2
    • Vancouver

      Chandel AK, Felipe M das G de A. Current Advances in Biotechnological Production of Xylitol [Internet]. 2022 ;[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/978-3-031-04942-2
  • Source: Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol. Unidade: EEL

    Subjects: BIOMASSA, FERMENTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      QUEIROZ, Sarah de Souza et al. Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates. Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol. Tradução . [S.l.]: Springer Cham, 2022. p. 51-66. Disponível em: https://doi.org/10.1007/978-3-031-04942-2_3. Acesso em: 05 out. 2024.
    • APA

      Queiroz, S. de S., Jofre, F. M., Bianchini, I. de A., Bordini, F. W., Boaes, T. da S., Chandel, A. K., & Felipe, M. das G. de A. (2022). Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates. In Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol (p. 51-66). Springer Cham. doi:10.1007/978-3-031-04942-2_3
    • NLM

      Queiroz S de S, Jofre FM, Bianchini I de A, Bordini FW, Boaes T da S, Chandel AK, Felipe M das G de A. Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates [Internet]. In: Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol. Springer Cham; 2022. p. 51-66.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/978-3-031-04942-2_3
    • Vancouver

      Queiroz S de S, Jofre FM, Bianchini I de A, Bordini FW, Boaes T da S, Chandel AK, Felipe M das G de A. Fermentative Production of Xylitol from Various Lignocellulosic Hydrolysates [Internet]. In: Current Advances in Biotechnological Production of Xylitol Fermentative: Production of Xylitol. Springer Cham; 2022. p. 51-66.[citado 2024 out. 05 ] Available from: https://doi.org/10.1007/978-3-031-04942-2_3
  • Source: Bioengineered. Unidade: EEL

    Subjects: BIOTECNOLOGIA, FERMENTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUSCHONI, Uirajá Cayowa Magalhães et al. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications. Bioengineered, v. 13, n. 4, p. 9645-9661, 2022Tradução . . Disponível em: https://doi.org/10.1080/21655979.2022.2057760. Acesso em: 05 out. 2024.
    • APA

      Ruschoni, U. C. M., Mera, A. E. M., Zamudio, L. H. B., Kumar, V., Taherzadeh, M. J., Garlapati, V. K., & Chandel, A. K. (2022). Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications. Bioengineered, 13( 4), 9645-9661. doi:10.1080/21655979.2022.2057760
    • NLM

      Ruschoni UCM, Mera AEM, Zamudio LHB, Kumar V, Taherzadeh MJ, Garlapati VK, Chandel AK. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications [Internet]. Bioengineered. 2022 ;13( 4): 9645-9661.[citado 2024 out. 05 ] Available from: https://doi.org/10.1080/21655979.2022.2057760
    • Vancouver

      Ruschoni UCM, Mera AEM, Zamudio LHB, Kumar V, Taherzadeh MJ, Garlapati VK, Chandel AK. Comprehensive review on biotechnological production of hyaluronic acid: status, innovation, market and applications [Internet]. Bioengineered. 2022 ;13( 4): 9645-9661.[citado 2024 out. 05 ] Available from: https://doi.org/10.1080/21655979.2022.2057760
  • Source: Sustainable Microbial Technologies for Valorization of Agro-Industrial Wastes. Unidade: EEL

    Subjects: BIOCIÊNCIAS, ENGENHARIA, TECNOLOGIA, TECNOLOGIA DE ALIMENTOS, CIÊNCIA DE ALIMENTOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JAIN, P. et al. Pernicious parthenium weed: an insight into its biogenic control and transformation to organic fertilizer. Sustainable Microbial Technologies for Valorization of Agro-Industrial Wastes. Tradução . [S.l.]: CRC Press, 2022. p. 1-376. Disponível em: https://doi.org/10.1201/9781003191247. Acesso em: 05 out. 2024.
    • APA

      Jain, P., Chandel, A. K., Singh, A. K., & Sonkar, S. (2022). Pernicious parthenium weed: an insight into its biogenic control and transformation to organic fertilizer. In Sustainable Microbial Technologies for Valorization of Agro-Industrial Wastes (p. 1-376). CRC Press. doi:10.1201/9781003191247
    • NLM

      Jain P, Chandel AK, Singh AK, Sonkar S. Pernicious parthenium weed: an insight into its biogenic control and transformation to organic fertilizer [Internet]. In: Sustainable Microbial Technologies for Valorization of Agro-Industrial Wastes. CRC Press; 2022. p. 1-376.[citado 2024 out. 05 ] Available from: https://doi.org/10.1201/9781003191247
    • Vancouver

      Jain P, Chandel AK, Singh AK, Sonkar S. Pernicious parthenium weed: an insight into its biogenic control and transformation to organic fertilizer [Internet]. In: Sustainable Microbial Technologies for Valorization of Agro-Industrial Wastes. CRC Press; 2022. p. 1-376.[citado 2024 out. 05 ] Available from: https://doi.org/10.1201/9781003191247
  • Source: Lignocellulose Bioconversion Through White Biotechnology. Unidade: EEL

    Assunto: BIOTECNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVEIRA, Marcos Henrique Luciano et al. Lignin Conversion though Biological and Chemical Routes and Potential Chemicals. Lignocellulose Bioconversion Through White Biotechnology. Tradução . [S.l.]: John Wiley & Sons, Ltd., Chichester, 2022. p. 248-258. Disponível em: https://doi.org/10.1002/9781119735984.ch10. Acesso em: 05 out. 2024.
    • APA

      Silveira, M. H. L., Mera, A. E. M., Ribeiro, E. A., & Chandel, A. K. (2022). Lignin Conversion though Biological and Chemical Routes and Potential Chemicals. In Lignocellulose Bioconversion Through White Biotechnology (p. 248-258). John Wiley & Sons, Ltd., Chichester. doi:10.1002/9781119735984.ch10
    • NLM

      Silveira MHL, Mera AEM, Ribeiro EA, Chandel AK. Lignin Conversion though Biological and Chemical Routes and Potential Chemicals [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 248-258.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch10
    • Vancouver

      Silveira MHL, Mera AEM, Ribeiro EA, Chandel AK. Lignin Conversion though Biological and Chemical Routes and Potential Chemicals [Internet]. In: Lignocellulose Bioconversion Through White Biotechnology. John Wiley & Sons, Ltd., Chichester; 2022. p. 248-258.[citado 2024 out. 05 ] Available from: https://doi.org/10.1002/9781119735984.ch10

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2024