Source: Program. Conference titles: CLAF/ICTP-SAIFR Latin-American Astroparticle Physics School. Unidade: IFSC
Subjects: APRENDIZADO COMPUTACIONAL, FÍSICA COMPUTACIONAL, ASTROFÍSICA, MÉTODO DE MONTE CARLO
ABNT
RABELO, Eduardo Fonseca. Mass composition classification of extensive air showers at CTAO via Monte Carlo simulations and machine learning. 2025, Anais.. São Paulo: International Centre for Theoretical Physics, South American Institute for Fundamental Research - ICTP-SAIFR, 2025. Disponível em: https://repositorio.usp.br/directbitstream/378447b6-af38-41a1-9694-e8251cd9c0a7/3266949.pdf. Acesso em: 06 out. 2025.APA
Rabelo, E. F. (2025). Mass composition classification of extensive air showers at CTAO via Monte Carlo simulations and machine learning. In Program. São Paulo: International Centre for Theoretical Physics, South American Institute for Fundamental Research - ICTP-SAIFR. Recuperado de https://repositorio.usp.br/directbitstream/378447b6-af38-41a1-9694-e8251cd9c0a7/3266949.pdfNLM
Rabelo EF. Mass composition classification of extensive air showers at CTAO via Monte Carlo simulations and machine learning [Internet]. Program. 2025 ;[citado 2025 out. 06 ] Available from: https://repositorio.usp.br/directbitstream/378447b6-af38-41a1-9694-e8251cd9c0a7/3266949.pdfVancouver
Rabelo EF. Mass composition classification of extensive air showers at CTAO via Monte Carlo simulations and machine learning [Internet]. Program. 2025 ;[citado 2025 out. 06 ] Available from: https://repositorio.usp.br/directbitstream/378447b6-af38-41a1-9694-e8251cd9c0a7/3266949.pdf