Filters : "Instytut Matematyczny PAN" Limpar

Filters



Refine with date range


  • In: Studia Mathematica. Unidade: IME

    Subjects: Topologia, Lógica Matemática, Teoria Dos Conjuntos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Claudia; TAUSK, Daniel Victor. Small Valdivia compacta and trees. Studia Mathematica[S.l.], Instytut Matematyczny PAN, v. 235, n. 2, p. 117-135, 2016. Disponível em: < http://dx.doi.org/10.4064/sm8477-7-2016 > DOI: 10.4064/sm8477-7-2016.
    • APA

      Correa, C., & Tausk, D. V. (2016). Small Valdivia compacta and trees. Studia Mathematica, 235( 2), 117-135. doi:10.4064/sm8477-7-2016
    • NLM

      Correa C, Tausk DV. Small Valdivia compacta and trees [Internet]. Studia Mathematica. 2016 ; 235( 2): 117-135.Available from: http://dx.doi.org/10.4064/sm8477-7-2016
    • Vancouver

      Correa C, Tausk DV. Small Valdivia compacta and trees [Internet]. Studia Mathematica. 2016 ; 235( 2): 117-135.Available from: http://dx.doi.org/10.4064/sm8477-7-2016
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Leandro Candido; GALEGO, Eloi Medina. Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3. Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 220, n. 1, p. 83-92, 2013. Disponível em: < http://dx.doi.org/10.4064/fm220-1-5 > DOI: 10.4064/fm220-1-5.
    • APA

      Batista, L. C., & Galego, E. M. (2013). Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3. Fundamenta Mathematicae, 220( 1), 83-92. doi:10.4064/fm220-1-5
    • NLM

      Batista LC, Galego EM. Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3 [Internet]. Fundamenta Mathematicae. 2013 ; 220( 1): 83-92.Available from: http://dx.doi.org/10.4064/fm220-1-5
    • Vancouver

      Batista LC, Galego EM. Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3 [Internet]. Fundamenta Mathematicae. 2013 ; 220( 1): 83-92.Available from: http://dx.doi.org/10.4064/fm220-1-5
  • In: Studia Mathematica. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CANDIDO, Leandro; GALEGO, Eloi Medina. How far is C(ω) from the other C(K) spaces? Studia Mathematica[S.l.], Instytut Matematyczny PAN, v. 217, n. 2, p. 123-138, 2013. Disponível em: < http://dx.doi.org/10.4064/sm217-2-2 > DOI: 10.4064/sm217-2-2.
    • APA

      Candido, L., & Galego, E. M. (2013). How far is C(ω) from the other C(K) spaces? Studia Mathematica, 217( 2), 123-138. doi:10.4064/sm217-2-2
    • NLM

      Candido L, Galego EM. How far is C(ω) from the other C(K) spaces? [Internet]. Studia Mathematica. 2013 ; 217( 2): 123-138.Available from: http://dx.doi.org/10.4064/sm217-2-2
    • Vancouver

      Candido L, Galego EM. How far is C(ω) from the other C(K) spaces? [Internet]. Studia Mathematica. 2013 ; 217( 2): 123-138.Available from: http://dx.doi.org/10.4064/sm217-2-2
  • In: Studia Mathematica. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; SAMUEL, Christian. The classical subspaces of the projective tensor products of ℓp and C(α) spaces, α<ω1. Studia Mathematica[S.l.], Instytut Matematyczny PAN, v. 214, n. 3, p. 237-250, 2013. Disponível em: < http://dx.doi.org/10.4064/sm214-3-3 > DOI: 10.4064/sm214-3-3.
    • APA

      Galego, E. M., & Samuel, C. (2013). The classical subspaces of the projective tensor products of ℓp and C(α) spaces, α<ω1. Studia Mathematica, 214( 3), 237-250. doi:10.4064/sm214-3-3
    • NLM

      Galego EM, Samuel C. The classical subspaces of the projective tensor products of ℓp and C(α) spaces, α<ω1 [Internet]. Studia Mathematica. 2013 ; 214( 3): 237-250.Available from: http://dx.doi.org/10.4064/sm214-3-3
    • Vancouver

      Galego EM, Samuel C. The classical subspaces of the projective tensor products of ℓp and C(α) spaces, α<ω1 [Internet]. Studia Mathematica. 2013 ; 214( 3): 237-250.Available from: http://dx.doi.org/10.4064/sm214-3-3
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEANDRO, Candido; GALEGO, Eloi Medina. How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 218. p. 151-163, 2012. Disponível em: < http://dx.doi.org/10.4064/fm218-2-3 > DOI: 10.4064/fm218-2-3.
    • APA

      Leandro, C., & Galego, E. M. (2012). How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? Fundamenta Mathematicae, 218. p. 151-163. doi:10.4064/fm218-2-3
    • NLM

      Leandro C, Galego EM. How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? [Internet]. Fundamenta Mathematicae. 2012 ; 218. p. 151-163Available from: http://dx.doi.org/10.4064/fm218-2-3
    • Vancouver

      Leandro C, Galego EM. How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? [Internet]. Fundamenta Mathematicae. 2012 ; 218. p. 151-163Available from: http://dx.doi.org/10.4064/fm218-2-3
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. On isomorphism classes of C(2m⊕[0,α]) spaces. Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 204, n. 1, p. 87-95, 2009. Disponível em: < http://dx.doi.org/10.4064/fm204-1-5 > DOI: 10.4064/fm204-1-5.
    • APA

      Galego, E. M. (2009). On isomorphism classes of C(2m⊕[0,α]) spaces. Fundamenta Mathematicae, 204( 1), 87-95. doi:10.4064/fm204-1-5
    • NLM

      Galego EM. On isomorphism classes of C(2m⊕[0,α]) spaces [Internet]. Fundamenta Mathematicae. 2009 ; 204( 1): 87-95.Available from: http://dx.doi.org/10.4064/fm204-1-5
    • Vancouver

      Galego EM. On isomorphism classes of C(2m⊕[0,α]) spaces [Internet]. Fundamenta Mathematicae. 2009 ; 204( 1): 87-95.Available from: http://dx.doi.org/10.4064/fm204-1-5
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Geometria Euclidiana

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; PENTEADO, Dirceu; VIEIRA, J. P. Fixed points on Klein bottle fiber bundles over the circle. Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 203, n. 3, p. 263-292, 2009. Disponível em: < http://dx.doi.org/10.4064/fm203-3-3 > DOI: 10.4064/fm203-3-3.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2009). Fixed points on Klein bottle fiber bundles over the circle. Fundamenta Mathematicae, 203( 3), 263-292. doi:10.4064/fm203-3-3
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on Klein bottle fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2009 ; 203( 3): 263-292.Available from: http://dx.doi.org/10.4064/fm203-3-3
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on Klein bottle fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2009 ; 203( 3): 263-292.Available from: http://dx.doi.org/10.4064/fm203-3-3
  • In: Colloquium Mathematicum. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. Cantor-Schroeder-Bernstein quadruples for Banach spaces. Colloquium Mathematicum[S.l.], Instytut Matematyczny PAN, v. 111, n. 1, p. 105-115, 2008. Disponível em: < http://dx.doi.org/10.4064/cm111-1-10 > DOI: 10.4064/cm111-1-10.
    • APA

      Galego, E. M. (2008). Cantor-Schroeder-Bernstein quadruples for Banach spaces. Colloquium Mathematicum, 111( 1), 105-115. doi:10.4064/cm111-1-10
    • NLM

      Galego EM. Cantor-Schroeder-Bernstein quadruples for Banach spaces [Internet]. Colloquium Mathematicum. 2008 ; 111( 1): 105-115.Available from: http://dx.doi.org/10.4064/cm111-1-10
    • Vancouver

      Galego EM. Cantor-Schroeder-Bernstein quadruples for Banach spaces [Internet]. Colloquium Mathematicum. 2008 ; 111( 1): 105-115.Available from: http://dx.doi.org/10.4064/cm111-1-10
  • In: Studia Mathematica. Unidade: IME

    Subjects: Análise Funcional, Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. A note on extensions of Pełczyński's decomposition method in Banach spaces. Studia Mathematica[S.l.], Instytut Matematyczny PAN, v. 180, p. 27-40-, 2007. Disponível em: < https://dx.doi.org/10.4064/sm180-1-3 > DOI: 10.4064/sm180-1-3.
    • APA

      Galego, E. M. (2007). A note on extensions of Pełczyński's decomposition method in Banach spaces. Studia Mathematica, 180, 27-40-. doi:10.4064/sm180-1-3
    • NLM

      Galego EM. A note on extensions of Pełczyński's decomposition method in Banach spaces [Internet]. Studia Mathematica. 2007 ;180 27-40-.Available from: https://dx.doi.org/10.4064/sm180-1-3
    • Vancouver

      Galego EM. A note on extensions of Pełczyński's decomposition method in Banach spaces [Internet]. Studia Mathematica. 2007 ;180 27-40-.Available from: https://dx.doi.org/10.4064/sm180-1-3
  • In: Studia Mathematica, Warsaw. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. The Schroeder-Bernstein index for Banach spaces. Studia Mathematica, Warsaw[S.l.], Instytut Matematyczny PAN, v. 164, n. 1, p. 29-38, 2004. Disponível em: < http://dx.doi.org/10.4064/sm164-1-2 > DOI: 10.4064/sm164-1-2.
    • APA

      Galego, E. M. (2004). The Schroeder-Bernstein index for Banach spaces. Studia Mathematica, Warsaw, 164( 1), 29-38. doi:10.4064/sm164-1-2
    • NLM

      Galego EM. The Schroeder-Bernstein index for Banach spaces [Internet]. Studia Mathematica, Warsaw. 2004 ; 164( 1): 29-38.Available from: http://dx.doi.org/10.4064/sm164-1-2
    • Vancouver

      Galego EM. The Schroeder-Bernstein index for Banach spaces [Internet]. Studia Mathematica, Warsaw. 2004 ; 164( 1): 29-38.Available from: http://dx.doi.org/10.4064/sm164-1-2
  • In: Colloquium Mathematicum. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. On pairs of Banach spaces which are isomorphic to complemented subspaces of each other. Colloquium Mathematicum[S.l.], Instytut Matematyczny PAN, v. 101, n. 2, p. 279-290, 2004. Disponível em: < http://dx.doi.org/10.4064/cm101-2-10 > DOI: 10.4064/cm101-2-10.
    • APA

      Galego, E. M. (2004). On pairs of Banach spaces which are isomorphic to complemented subspaces of each other. Colloquium Mathematicum, 101( 2), 279-290. doi:10.4064/cm101-2-10
    • NLM

      Galego EM. On pairs of Banach spaces which are isomorphic to complemented subspaces of each other [Internet]. Colloquium Mathematicum. 2004 ; 101( 2): 279-290.Available from: http://dx.doi.org/10.4064/cm101-2-10
    • Vancouver

      Galego EM. On pairs of Banach spaces which are isomorphic to complemented subspaces of each other [Internet]. Colloquium Mathematicum. 2004 ; 101( 2): 279-290.Available from: http://dx.doi.org/10.4064/cm101-2-10


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020