Filtros : "Springfield" Limpar

Filtros



Refine with date range


  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: TEORIA DE MORSE, MÉTODOS VARIACIONAIS, EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira; NEMER, Rodrigo Cohen Mota; SOARES, Sérgio Henrique Monari. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, Springfield, v. 20, n. Ja 2021, p. 449-465, 2021. Disponível em: < https://doi.org/10.3934/cpaa.2020276 > DOI: 10.3934/cpaa.2020276.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2021). The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure and Applied Analysis, 20( Ja 2021), 449-465. doi:10.3934/cpaa.2020276
    • NLM

      Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.Available from: https://doi.org/10.3934/cpaa.2020276
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field [Internet]. Communications on Pure and Applied Analysis. 2021 ; 20( Ja 2021): 449-465.Available from: https://doi.org/10.3934/cpaa.2020276
  • Source: AIMS Bioengineering. Unidade: FOB

    Subjects: BIOENGENHARIA, COVID-19, SURTOS DE DOENÇAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUCHAIM, Rogério Leone. Bioengineering applied to Covid-19 pandemic: from bench to bedside. AIMS Bioengineering, Springfield, v. 8, n. 1, p. 14-15, 2021. Disponível em: < http://dx.doi.org/10.3934/bioeng.2021002 > DOI: 10.3934/bioeng.2021002.
    • APA

      Buchaim, R. L. (2021). Bioengineering applied to Covid-19 pandemic: from bench to bedside. AIMS Bioengineering, 8( 1), 14-15. doi:10.3934/bioeng.2021002
    • NLM

      Buchaim RL. Bioengineering applied to Covid-19 pandemic: from bench to bedside [Internet]. AIMS Bioengineering. 2021 ; 8( 1): 14-15.Available from: http://dx.doi.org/10.3934/bioeng.2021002
    • Vancouver

      Buchaim RL. Bioengineering applied to Covid-19 pandemic: from bench to bedside [Internet]. AIMS Bioengineering. 2021 ; 8( 1): 14-15.Available from: http://dx.doi.org/10.3934/bioeng.2021002
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, INVARIANTES, ATRATORES, CAOS (SISTEMAS DINÂMICOS)

    Disponível em 2022-04-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOTA, Marcos Coutinho; OLIVEIRA, Regilene Delazari dos Santos. Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, Springfield, v. 26, n. 3, p. 1653-1673, 2021. Disponível em: < https://doi.org/10.3934/dcdsb.2020177 > DOI: 10.3934/dcdsb.2020177.
    • APA

      Mota, M. C., & Oliveira, R. D. dos S. (2021). Dynamic aspects of sprott BC chaotic system. Discrete and Continuous Dynamical Systems : Series B, 26( 3), 1653-1673. doi:10.3934/dcdsb.2020177
    • NLM

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.Available from: https://doi.org/10.3934/dcdsb.2020177
    • Vancouver

      Mota MC, Oliveira RD dos S. Dynamic aspects of sprott BC chaotic system [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2021 ; 26( 3): 1653-1673.Available from: https://doi.org/10.3934/dcdsb.2020177
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ATRATORES, ESTABILIDADE ESTRUTURAL (EQUAÇÕES DIFERENCIAIS ORDINÁRIAS)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; DEMUNER, Daniela Paula. Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, Springfield, v. 19, n. 4, p. 1979-1996, 2020. Disponível em: < https://doi.org/10.3934/cpaa.2020087 > DOI: 10.3934/cpaa.2020087.
    • APA

      Bonotto, E. de M., & Demuner, D. P. (2020). Stability and forward attractors for non-autonomous impulsive semidynamical systems. Communications on Pure and Applied Analysis, 19( 4), 1979-1996. doi:10.3934/cpaa.2020087
    • NLM

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.Available from: https://doi.org/10.3934/cpaa.2020087
    • Vancouver

      Bonotto E de M, Demuner DP. Stability and forward attractors for non-autonomous impulsive semidynamical systems [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1979-1996.Available from: https://doi.org/10.3934/cpaa.2020087
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS LINEARES, ROBUSTEZ, DIMENSÃO INFINITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz; SOLA-MORALES, Joan; NAKASSIMA, Guilherme Kenji. Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, Springfield, v. 19, n. 6, p. 3189-3207, 2020. Disponível em: < https://doi.org/10.3934/cpaa.2020138 > DOI: 10.3934/cpaa.2020138.
    • APA

      Rodrigues, H. M., Sola-Morales, J., & Nakassima, G. K. (2020). Stability problems in nonautonomous linear differential equations in infinite dimensions. Communications on Pure and Applied Analysis, 19( 6), 3189-3207. doi:10.3934/cpaa.2020138
    • NLM

      Rodrigues HM, Sola-Morales J, Nakassima GK. Stability problems in nonautonomous linear differential equations in infinite dimensions [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 6): 3189-3207.Available from: https://doi.org/10.3934/cpaa.2020138
    • Vancouver

      Rodrigues HM, Sola-Morales J, Nakassima GK. Stability problems in nonautonomous linear differential equations in infinite dimensions [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 6): 3189-3207.Available from: https://doi.org/10.3934/cpaa.2020138
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos; VALLS, Claudia. On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, Springfield, v. 25, n. 5, p. 1821-1834, 2020. Disponível em: < https://doi.org/10.3934/dcdsb.2020004 > DOI: 10.3934/dcdsb.2020004.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). On the Abel differential equations of third kind. Discrete and Continuous Dynamical Systems : Series B, 25( 5), 1821-1834. doi:10.3934/dcdsb.2020004
    • NLM

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.Available from: https://doi.org/10.3934/dcdsb.2020004
    • Vancouver

      Oliveira RD dos S, Valls C. On the Abel differential equations of third kind [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; 25( 5): 1821-1834.Available from: https://doi.org/10.3934/dcdsb.2020004
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; ROBINSON, James C; LANGA, José Antonio. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, Springfield, v. 19, n. 4, p. 1997-2013, 2020. Disponível em: < https://doi.org/10.3934/cpaa.2020088 > DOI: 10.3934/cpaa.2020088.
    • APA

      Carvalho, A. N. de, Robinson, J. C., & Langa, J. A. (2020). Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor. Communications on Pure and Applied Analysis, 19( 4), 1997-2013. doi:10.3934/cpaa.2020088
    • NLM

      Carvalho AN de, Robinson JC, Langa JA. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.Available from: https://doi.org/10.3934/cpaa.2020088
    • Vancouver

      Carvalho AN de, Robinson JC, Langa JA. Forwards dynamics of non-autonomous dynamical systems: driving semigroups without backwards uniqueness and structure of the attractor [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 1997-2013.Available from: https://doi.org/10.3934/cpaa.2020088
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais; CARVALHO, Alexandre Nolasco de; NASCIMENTO, Marcelo José Dias. Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems : Series B, Springfield, v. No 2020, n. 11, p. 4221-4255, 2020. Disponível em: < https://doi.org/10.3934/dcdsb.2020095 > DOI: 10.3934/dcdsb.2020095.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, & Nascimento, M. J. D. (2020). Fractional approximations of abstract semilinear parabolic problems. Discrete and Continuous Dynamical Systems : Series B, No 2020( 11), 4221-4255. doi:10.3934/dcdsb.2020095
    • NLM

      Bezerra FDM, Carvalho AN de, Nascimento MJD. Fractional approximations of abstract semilinear parabolic problems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; No 2020( 11): 4221-4255.Available from: https://doi.org/10.3934/dcdsb.2020095
    • Vancouver

      Bezerra FDM, Carvalho AN de, Nascimento MJD. Fractional approximations of abstract semilinear parabolic problems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2020 ; No 2020( 11): 4221-4255.Available from: https://doi.org/10.3934/dcdsb.2020095
  • Source: Discrete & Continuous Dynamical Systems. Series A. Unidade: IME

    Subjects: TEORIA ERGÓDICA, TOPOLOGIA DINÂMICA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOYLAND, Philip; CARVALHO, André Salles de; HALL, Toby. Statistical stability for Barge-Martin attractors derived from tent maps. Discrete & Continuous Dynamical Systems. Series A, Springfield, v. 40, n. 5, p. 2903-2915, 2020. Disponível em: < https://doi.org/10.3934/dcds.2020154 > DOI: 10.3934/dcds.2020154.
    • APA

      Boyland, P., Carvalho, A. S. de, & Hall, T. (2020). Statistical stability for Barge-Martin attractors derived from tent maps. Discrete & Continuous Dynamical Systems. Series A, 40( 5), 2903-2915. doi:10.3934/dcds.2020154
    • NLM

      Boyland P, Carvalho AS de, Hall T. Statistical stability for Barge-Martin attractors derived from tent maps [Internet]. Discrete & Continuous Dynamical Systems. Series A. 2020 ; 40( 5): 2903-2915.Available from: https://doi.org/10.3934/dcds.2020154
    • Vancouver

      Boyland P, Carvalho AS de, Hall T. Statistical stability for Barge-Martin attractors derived from tent maps [Internet]. Discrete & Continuous Dynamical Systems. Series A. 2020 ; 40( 5): 2903-2915.Available from: https://doi.org/10.3934/dcds.2020154
  • Source: Mathematical Biosciences and Engineering. Unidades: EACH, FM

    Subjects: BIOLOGIA MOLECULAR, REGULAÇÃO GÊNICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIOVANINI, Guilherme; SABINO, Alan Utsuni; BARROS, Luciana R. C.; RAMOS, Alexandre Ferreira. A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene. Mathematical Biosciences and Engineering, Springfield, v. 17, n. 5, p. 5477-5503, 2020. Disponível em: < http://dx.doi.org/10.3934/mbe.2020295 > DOI: 10.3934/mbe.2020295.
    • APA

      Giovanini, G., Sabino, A. U., Barros, L. R. C., & Ramos, A. F. (2020). A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene. Mathematical Biosciences and Engineering, 17( 5), 5477-5503. doi:10.3934/mbe.2020295
    • NLM

      Giovanini G, Sabino AU, Barros LRC, Ramos AF. A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene [Internet]. Mathematical Biosciences and Engineering. 2020 ; 17( 5): 5477-5503.Available from: http://dx.doi.org/10.3934/mbe.2020295
    • Vancouver

      Giovanini G, Sabino AU, Barros LRC, Ramos AF. A comparative analysis of noise properties of stochastic binary models for a self-repressing and for an externally regulating gene [Internet]. Mathematical Biosciences and Engineering. 2020 ; 17( 5): 5477-5503.Available from: http://dx.doi.org/10.3934/mbe.2020295
  • Source: Discrete and Continuous Dynamical Systems Series B. Unidade: ICMC

    Subjects: MODELO CASCATA, ATRATORES, SEMIGRUPOS (COMBINATÓRIA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; UZAL, José Manuel; BORTOLAN, Matheus Cheque; COLLEGARI, Rodolfo. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B, Springfield, 2020. Disponível em: < https://doi.org/10.3934/dcdsb.2020306 > DOI: 10.3934/dcdsb.2020306.
    • APA

      Bonotto, E. de M., Uzal, J. M., Bortolan, M. C., & Collegari, R. (2020). Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems. Discrete and Continuous Dynamical Systems Series B. doi:10.3934/dcdsb.2020306
    • NLM

      Bonotto E de M, Uzal JM, Bortolan MC, Collegari R. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2020 ;Available from: https://doi.org/10.3934/dcdsb.2020306
    • Vancouver

      Bonotto E de M, Uzal JM, Bortolan MC, Collegari R. Impulses in driving semigroups of nonautonomous dynamical systems: application to cascade systems [Internet]. Discrete and Continuous Dynamical Systems Series B. 2020 ;Available from: https://doi.org/10.3934/dcdsb.2020306
  • Source: Advances in Mathematics of Communications. Unidade: IME

    Subjects: TEORIA DOS CÓDIGOS, ANÉIS DE GRUPOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson; POLCINO MILIES, Francisco César. Cyclic codes of length '2p POT. n' over finite chain rings. Advances in Mathematics of Communications, Springfield, v. 14, n. 2, p. 233-245, 2020. Disponível em: < https://doi.org/10.3934/amc.2020017 > DOI: 10.3934/amc.2020017.
    • APA

      Silva, A., & Polcino Milies, F. C. (2020). Cyclic codes of length '2p POT. n' over finite chain rings. Advances in Mathematics of Communications, 14( 2), 233-245. doi:10.3934/amc.2020017
    • NLM

      Silva A, Polcino Milies FC. Cyclic codes of length '2p POT. n' over finite chain rings [Internet]. Advances in Mathematics of Communications. 2020 ; 14( 2): 233-245.Available from: https://doi.org/10.3934/amc.2020017
    • Vancouver

      Silva A, Polcino Milies FC. Cyclic codes of length '2p POT. n' over finite chain rings [Internet]. Advances in Mathematics of Communications. 2020 ; 14( 2): 233-245.Available from: https://doi.org/10.3934/amc.2020017
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, EQUAÇÕES DA ONDA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu; SEMINARIO-HUERTAS, Paulo Nicanor. Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, Springfield, v. 19, n. 4, p. 2219-2233, 2020. Disponível em: < https://doi.org/10.3934/cpaa.2020097 > DOI: 10.3934/cpaa.2020097.
    • APA

      Ma, T. F., & Seminario-Huertas, P. N. (2020). Attractors for semilinear wave equations with localized damping and external forces. Communications on Pure and Applied Analysis, 19( 4), 2219-2233. doi:10.3934/cpaa.2020097
    • NLM

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.Available from: https://doi.org/10.3934/cpaa.2020097
    • Vancouver

      Ma TF, Seminario-Huertas PN. Attractors for semilinear wave equations with localized damping and external forces [Internet]. Communications on Pure and Applied Analysis. 2020 ; 19( 4): 2219-2233.Available from: https://doi.org/10.3934/cpaa.2020097
  • Source: Discrete and Continuous Dynamical Systems. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, OPERADORES NÃO LINEARES

    Disponível em 2021-07-01Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NORNBERG, Gabrielle; SCHIERA, Delia; SIRAKOV, Boyan. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete and Continuous Dynamical Systems, Springfield, v. 40, n. 6, p. 3857-3881, 2020. Disponível em: < https://doi.org/10.3934/dcds.2020128 > DOI: 10.3934/dcds.2020128.
    • APA

      Nornberg, G., Schiera, D., & Sirakov, B. (2020). A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth. Discrete and Continuous Dynamical Systems, 40( 6), 3857-3881. doi:10.3934/dcds.2020128
    • NLM

      Nornberg G, Schiera D, Sirakov B. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth [Internet]. Discrete and Continuous Dynamical Systems. 2020 ; 40( 6): 3857-3881.Available from: https://doi.org/10.3934/dcds.2020128
    • Vancouver

      Nornberg G, Schiera D, Sirakov B. A priori estimates and multiplicity for systems of elliptic PDE with natural gradient growth [Internet]. Discrete and Continuous Dynamical Systems. 2020 ; 40( 6): 3857-3881.Available from: https://doi.org/10.3934/dcds.2020128
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LI, Yanan; CARVALHO, Alexandre Nolasco de; LUNA, Tito Luciano Mamani; MOREIRA, Estefani Moraes. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, Springfield, v. No 2020, n. 11, p. 5181-5196, 2020. Disponível em: < https://doi.org/10.3934/cpaa.2020232 > DOI: 10.3934/cpaa.2020232.
    • APA

      Li, Y., Carvalho, A. N. de, Luna, T. L. M., & Moreira, E. M. (2020). A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation. Communications on Pure and Applied Analysis, No 2020( 11), 5181-5196. doi:10.3934/cpaa.2020232
    • NLM

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.Available from: https://doi.org/10.3934/cpaa.2020232
    • Vancouver

      Li Y, Carvalho AN de, Luna TLM, Moreira EM. A non-autonomous bifurcation problem for a non-local scalar one-dimensional parabolic equation [Internet]. Communications on Pure and Applied Analysis. 2020 ; No 2020( 11): 5181-5196.Available from: https://doi.org/10.3934/cpaa.2020232
  • Source: Mathematical Biosciences and Engineering. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, MODELOS MATEMÁTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGUIAR, Manuela; DIAS, Ana; MANOEL, Miriam Garcia. Gradient and Hamiltonian coupled systems on undirected networks. Mathematical Biosciences and Engineering, Springfield, v. 16, n. 5, p. 4622-4644, 2019. Disponível em: < http://dx.doi.org/10.3934/mbe.2019232 > DOI: 10.3934/mbe.2019232.
    • APA

      Aguiar, M., Dias, A., & Manoel, M. G. (2019). Gradient and Hamiltonian coupled systems on undirected networks. Mathematical Biosciences and Engineering, 16( 5), 4622-4644. doi:10.3934/mbe.2019232
    • NLM

      Aguiar M, Dias A, Manoel MG. Gradient and Hamiltonian coupled systems on undirected networks [Internet]. Mathematical Biosciences and Engineering. 2019 ; 16( 5): 4622-4644.Available from: http://dx.doi.org/10.3934/mbe.2019232
    • Vancouver

      Aguiar M, Dias A, Manoel MG. Gradient and Hamiltonian coupled systems on undirected networks [Internet]. Mathematical Biosciences and Engineering. 2019 ; 16( 5): 4622-4644.Available from: http://dx.doi.org/10.3934/mbe.2019232
  • Source: Discrete & Continuous Dynamical Systems - B. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M; NOGUEIRA, Ariadne; PEREIRA, Marcone Corrêa. Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary. Discrete & Continuous Dynamical Systems - B, Springfield, v. 24, n. 8, p. 4217–4246, 2019. Disponível em: < http://dx.doi.org/10.3934/dcdsb.2019079 > DOI: 10.3934/dcdsb.2019079.
    • APA

      Arrieta, J. M., Nogueira, A., & Pereira, M. C. (2019). Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary. Discrete & Continuous Dynamical Systems - B, 24( 8), 4217–4246. doi:10.3934/dcdsb.2019079
    • NLM

      Arrieta JM, Nogueira A, Pereira MC. Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary [Internet]. Discrete & Continuous Dynamical Systems - B. 2019 ; 24( 8): 4217–4246.Available from: http://dx.doi.org/10.3934/dcdsb.2019079
    • Vancouver

      Arrieta JM, Nogueira A, Pereira MC. Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary [Internet]. Discrete & Continuous Dynamical Systems - B. 2019 ; 24( 8): 4217–4246.Available from: http://dx.doi.org/10.3934/dcdsb.2019079
  • Source: Journal of Geometric Mechanics. Unidade: IME

    Subjects: GEOMETRIA DIFERENCIAL, GEOMETRIA RIEMANNIANA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVA, Waldyr Muniz; TERRA, Gláucio. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, Springfield, v. 11, n. 3, p. 439-446, 2019. Disponível em: < http://dx.doi.org/10.3934/jgm.2019022 > DOI: 10.3934/jgm.2019022.
    • APA

      Oliva, W. M., & Terra, G. (2019). Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 11( 3), 439-446. doi:10.3934/jgm.2019022
    • NLM

      Oliva WM, Terra G. Improving E. Cartan considerations on the invariance of nonholonomic mechanics [Internet]. Journal of Geometric Mechanics. 2019 ; 11( 3): 439-446.Available from: http://dx.doi.org/10.3934/jgm.2019022
    • Vancouver

      Oliva WM, Terra G. Improving E. Cartan considerations on the invariance of nonholonomic mechanics [Internet]. Journal of Geometric Mechanics. 2019 ; 11( 3): 439-446.Available from: http://dx.doi.org/10.3934/jgm.2019022
  • Source: Communications on Pure & Applied Analysis. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, TEORIA ASSINTÓTICA, OPERADORES DIFERENCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo; MELO, César Adolfo Hernández. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction. Communications on Pure & Applied Analysis, Springfield, v. 18, n. 4, p. 2093–2116, 2019. Disponível em: < http://dx.doi.org/10.3934/cpaa.2019094 >.
    • APA

      Pava, J. A., & Melo, C. A. H. (2019). On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction. Communications on Pure & Applied Analysis, 18( 4), 2093–2116. Recuperado de http://dx.doi.org/10.3934/cpaa.2019094
    • NLM

      Pava JA, Melo CAH. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction [Internet]. Communications on Pure & Applied Analysis. 2019 ; 18( 4): 2093–2116.Available from: http://dx.doi.org/10.3934/cpaa.2019094
    • Vancouver

      Pava JA, Melo CAH. On stability properties of the Cubic-Quintic Schrödinger equation with δ-point interaction [Internet]. Communications on Pure & Applied Analysis. 2019 ; 18( 4): 2093–2116.Available from: http://dx.doi.org/10.3934/cpaa.2019094
  • Source: Discrete and Continuous Dynamical Systems. Unidade: ICMC

    Subjects: EQUAÇÕES ALGÉBRICAS DIFERENCIAIS, TEORIA QUALITATIVA, ANÉIS E ÁLGEBRAS COMUTATIVOS, SIMETRIA, REPRESENTAÇÕES DE GRUPOS COMPACTOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MANOEL, Miriam Garcia; TEMPESTA, Patrícia. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, Springfield, v. 39, n. 4, p. 1957-1974, 2019. Disponível em: < http://dx.doi.org/10.3934/dcds.2019082 > DOI: 10.3934/dcds.2019082.
    • APA

      Manoel, M. G., & Tempesta, P. (2019). Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 39( 4), 1957-1974. doi:10.3934/dcds.2019082
    • NLM

      Manoel MG, Tempesta P. Binary differential equations with symmetries [Internet]. Discrete and Continuous Dynamical Systems. 2019 ; 39( 4): 1957-1974.Available from: http://dx.doi.org/10.3934/dcds.2019082
    • Vancouver

      Manoel MG, Tempesta P. Binary differential equations with symmetries [Internet]. Discrete and Continuous Dynamical Systems. 2019 ; 39( 4): 1957-1974.Available from: http://dx.doi.org/10.3934/dcds.2019082

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021