Filters : "Jerusalem" Limpar

Filters



Refine with date range


  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: SINGULARIDADES, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREITAS, Thiago Henrique de; PÉREZ, Victor Hugo Jorge; MIRANDA, Aldício José. Gluing of analytic space germs, invariants and Watanabe's conjecture. Israel Journal of Mathematics, Jerusalem, v. 246, n. 1, p. 211-237, 2021. Disponível em: < https://doi.org/10.1007/s11856-021-2241-y > DOI: 10.1007/s11856-021-2241-y.
    • APA

      Freitas, T. H. de, Pérez, V. H. J., & Miranda, A. J. (2021). Gluing of analytic space germs, invariants and Watanabe's conjecture. Israel Journal of Mathematics, 246( 1), 211-237. doi:10.1007/s11856-021-2241-y
    • NLM

      Freitas TH de, Pérez VHJ, Miranda AJ. Gluing of analytic space germs, invariants and Watanabe's conjecture [Internet]. Israel Journal of Mathematics. 2021 ; 246( 1): 211-237.Available from: https://doi.org/10.1007/s11856-021-2241-y
    • Vancouver

      Freitas TH de, Pérez VHJ, Miranda AJ. Gluing of analytic space germs, invariants and Watanabe's conjecture [Internet]. Israel Journal of Mathematics. 2021 ; 246( 1): 211-237.Available from: https://doi.org/10.1007/s11856-021-2241-y
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ÁLGEBRAS DE JORDAN

    Available on 2022-10-30Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZAICEV, Mikhail. Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, Jerusalem, v. 245, p. 615–638, 2021. Disponível em: < https://doi.org/10.1007/s11856-021-2221-2 > DOI: 10.1007/s11856-021-2221-2.
    • APA

      Shestakov, I. P., & Zaicev, M. (2021). Codimension growth of simple Jordan superalgebras. Israel Journal of Mathematics, 245, 615–638. doi:10.1007/s11856-021-2221-2
    • NLM

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.Available from: https://doi.org/10.1007/s11856-021-2221-2
    • Vancouver

      Shestakov IP, Zaicev M. Codimension growth of simple Jordan superalgebras [Internet]. Israel Journal of Mathematics. 2021 ; 245 615–638.Available from: https://doi.org/10.1007/s11856-021-2221-2
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: ESPAÇOS DE ORLICZ, ESPAÇOS DE INTERPOLAÇÃO

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORRÊA, Willian Hans Goes. Complex interpolation of families of Orlicz sequence spaces. Israel Journal of Mathematics, Jerusalem, v. 240, n. 2, p. 603-624, 2020. Disponível em: < https://doi.org/10.1007/s11856-020-2068-y > DOI: 10.1007/s11856-020-2068-y.
    • APA

      Corrêa, W. H. G. (2020). Complex interpolation of families of Orlicz sequence spaces. Israel Journal of Mathematics, 240( 2), 603-624. doi:10.1007/s11856-020-2068-y
    • NLM

      Corrêa WHG. Complex interpolation of families of Orlicz sequence spaces [Internet]. Israel Journal of Mathematics. 2020 ; 240( 2): 603-624.Available from: https://doi.org/10.1007/s11856-020-2068-y
    • Vancouver

      Corrêa WHG. Complex interpolation of families of Orlicz sequence spaces [Internet]. Israel Journal of Mathematics. 2020 ; 240( 2): 603-624.Available from: https://doi.org/10.1007/s11856-020-2068-y
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA ARITMÉTICA, TEORIA DOS NÚMEROS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVARENGA, Roberto. Hall algebras and graphs of Hecke operators for elliptic curves. Israel Journal of Mathematics, Jerusalem, v. 239, n. 1, p. 215-269, 2020. Disponível em: < https://doi.org/10.1007/s11856-020-2056-2 > DOI: 10.1007/s11856-020-2056-2.
    • APA

      Alvarenga, R. (2020). Hall algebras and graphs of Hecke operators for elliptic curves. Israel Journal of Mathematics, 239( 1), 215-269. doi:10.1007/s11856-020-2056-2
    • NLM

      Alvarenga R. Hall algebras and graphs of Hecke operators for elliptic curves [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 215-269.Available from: https://doi.org/10.1007/s11856-020-2056-2
    • Vancouver

      Alvarenga R. Hall algebras and graphs of Hecke operators for elliptic curves [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 215-269.Available from: https://doi.org/10.1007/s11856-020-2056-2
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; GRANTCHAROV, Dimitar; RAMIREZ, Luis Enrique; ZADUNAISKY, Pablo. Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics, Jerusalem, v. 239, n. 1, p. 99-128, 2020. Disponível em: < https://doi.org/10.1007/s11856-020-2048-2 > DOI: 10.1007/s11856-020-2048-2.
    • APA

      Futorny, V., Grantcharov, D., Ramirez, L. E., & Zadunaisky, P. (2020). Gelfand-Tsetlin theory for rational Galois algebras. Israel Journal of Mathematics, 239( 1), 99-128. doi:10.1007/s11856-020-2048-2
    • NLM

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 99-128.Available from: https://doi.org/10.1007/s11856-020-2048-2
    • Vancouver

      Futorny V, Grantcharov D, Ramirez LE, Zadunaisky P. Gelfand-Tsetlin theory for rational Galois algebras [Internet]. Israel Journal of Mathematics. 2020 ; 239( 1): 99-128.Available from: https://doi.org/10.1007/s11856-020-2048-2
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ÁLGEBRAS DE LIE

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly; FUTORNY, Vyacheslav; NILSSON, Jonathan. Representations of Lie algebras of vector fields on affine varieties. Israel Journal of Mathematics, Jerusalem, v. 233, n. 1, p. 379-399, 2019. Disponível em: < http://dx.doi.org/10.1007/s11856-019-1909-z > DOI: 10.1007/s11856-019-1909-z.
    • APA

      Billig, Y., Futorny, V., & Nilsson, J. (2019). Representations of Lie algebras of vector fields on affine varieties. Israel Journal of Mathematics, 233( 1), 379-399. doi:10.1007/s11856-019-1909-z
    • NLM

      Billig Y, Futorny V, Nilsson J. Representations of Lie algebras of vector fields on affine varieties [Internet]. Israel Journal of Mathematics. 2019 ; 233( 1): 379-399.Available from: http://dx.doi.org/10.1007/s11856-019-1909-z
    • Vancouver

      Billig Y, Futorny V, Nilsson J. Representations of Lie algebras of vector fields on affine varieties [Internet]. Israel Journal of Mathematics. 2019 ; 233( 1): 379-399.Available from: http://dx.doi.org/10.1007/s11856-019-1909-z
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: TEORIA DOS GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael; SAMBONET, Nicola. Schur’s theory for partial projective representations. Israel Journal of Mathematics, Jerusalem, v. 232, n. 1, p. 373-399, 2019. Disponível em: < http://dx.doi.org/10.1007/s11856-019-1876-4 > DOI: 10.1007/s11856-019-1876-4.
    • APA

      Dokuchaev, M., & Sambonet, N. (2019). Schur’s theory for partial projective representations. Israel Journal of Mathematics, 232( 1), 373-399. doi:10.1007/s11856-019-1876-4
    • NLM

      Dokuchaev M, Sambonet N. Schur’s theory for partial projective representations [Internet]. Israel Journal of Mathematics. 2019 ; 232( 1): 373-399.Available from: http://dx.doi.org/10.1007/s11856-019-1876-4
    • Vancouver

      Dokuchaev M, Sambonet N. Schur’s theory for partial projective representations [Internet]. Israel Journal of Mathematics. 2019 ; 232( 1): 373-399.Available from: http://dx.doi.org/10.1007/s11856-019-1876-4
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ESPAÇOS DE BANACH

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Elói Medina; SILVA, André Luis Porto da. A solution to the Cambern problem for finite-dimensional Hilbert spaces. Israel Journal of Mathematics, Jerusalem, v. 231, n. 1, p. 419-436, 2019. Disponível em: < http://dx.doi.org/10.1007/s11856-019-1858-6 > DOI: 10.1007/s11856-019-1858-6.
    • APA

      Galego, E. M., & Silva, A. L. P. da. (2019). A solution to the Cambern problem for finite-dimensional Hilbert spaces. Israel Journal of Mathematics, 231( 1), 419-436. doi:10.1007/s11856-019-1858-6
    • NLM

      Galego EM, Silva ALP da. A solution to the Cambern problem for finite-dimensional Hilbert spaces [Internet]. Israel Journal of Mathematics. 2019 ; 231( 1): 419-436.Available from: http://dx.doi.org/10.1007/s11856-019-1858-6
    • Vancouver

      Galego EM, Silva ALP da. A solution to the Cambern problem for finite-dimensional Hilbert spaces [Internet]. Israel Journal of Mathematics. 2019 ; 231( 1): 419-436.Available from: http://dx.doi.org/10.1007/s11856-019-1858-6
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: TOPOLOGIA, TEORIA DOS JOGOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini; BELLA, Angelo; DIAS, Rodrigo R. Tightness games with bounded finite selections. Israel Journal of Mathematics, Jerusalem, v. 224, n. 1, p. 133-158, 2018. Disponível em: < http://dx.doi.org/10.1007/s11856-018-1639-7 > DOI: 10.1007/s11856-018-1639-7.
    • APA

      Aurichi, L. F., Bella, A., & Dias, R. R. (2018). Tightness games with bounded finite selections. Israel Journal of Mathematics, 224( 1), 133-158. doi:10.1007/s11856-018-1639-7
    • NLM

      Aurichi LF, Bella A, Dias RR. Tightness games with bounded finite selections [Internet]. Israel Journal of Mathematics. 2018 ; 224( 1): 133-158.Available from: http://dx.doi.org/10.1007/s11856-018-1639-7
    • Vancouver

      Aurichi LF, Bella A, Dias RR. Tightness games with bounded finite selections [Internet]. Israel Journal of Mathematics. 2018 ; 224( 1): 133-158.Available from: http://dx.doi.org/10.1007/s11856-018-1639-7
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, GEOMETRIA FINITA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKELIAN, Nazar; BORGES FILHO, Herivelto Martins. Bounds for the number of points on curves over finite fields. Israel Journal of Mathematics, Jerusalem, v. 228, n. 1, p. 177-199, 2018. Disponível em: < http://dx.doi.org/10.1007/s11856-018-1774-1 > DOI: 10.1007/s11856-018-1774-1.
    • APA

      Arakelian, N., & Borges Filho, H. M. (2018). Bounds for the number of points on curves over finite fields. Israel Journal of Mathematics, 228( 1), 177-199. doi:10.1007/s11856-018-1774-1
    • NLM

      Arakelian N, Borges Filho HM. Bounds for the number of points on curves over finite fields [Internet]. Israel Journal of Mathematics. 2018 ; 228( 1): 177-199.Available from: http://dx.doi.org/10.1007/s11856-018-1774-1
    • Vancouver

      Arakelian N, Borges Filho HM. Bounds for the number of points on curves over finite fields [Internet]. Israel Journal of Mathematics. 2018 ; 228( 1): 177-199.Available from: http://dx.doi.org/10.1007/s11856-018-1774-1
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ÁLGEBRAS DE JORDAN

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANQUELA, José A.; CORTÉS, Teresa; SHESTAKOV, Ivan P. Commuting U-operators and nondegenerate imbeddings of Jordan systems. Israel Journal of Mathematics, Jerusalem, v. 225, n. 2, p. 871–887, 2018. Disponível em: < http://dx.doi.org/10.1007/s11856-018-1681-5 > DOI: 10.1007/s11856-018-1681-5.
    • APA

      Anquela, J. A., Cortés, T., & Shestakov, I. P. (2018). Commuting U-operators and nondegenerate imbeddings of Jordan systems. Israel Journal of Mathematics, 225( 2), 871–887. doi:10.1007/s11856-018-1681-5
    • NLM

      Anquela JA, Cortés T, Shestakov IP. Commuting U-operators and nondegenerate imbeddings of Jordan systems [Internet]. Israel Journal of Mathematics. 2018 ; 225( 2): 871–887.Available from: http://dx.doi.org/10.1007/s11856-018-1681-5
    • Vancouver

      Anquela JA, Cortés T, Shestakov IP. Commuting U-operators and nondegenerate imbeddings of Jordan systems [Internet]. Israel Journal of Mathematics. 2018 ; 225( 2): 871–887.Available from: http://dx.doi.org/10.1007/s11856-018-1681-5
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly; FUTORNY, Vyacheslav. Classification of simple cuspidal modules for solenoidal Lie algebras. Israel Journal of Mathematics, Jerusalem, v. 222, n. 1, p. 109-123, 2017. Disponível em: < https://dx.doi.org/10.1007/s11856-017-1584-x > DOI: 10.1007/s11856-017-1584-x.
    • APA

      Billig, Y., & Futorny, V. (2017). Classification of simple cuspidal modules for solenoidal Lie algebras. Israel Journal of Mathematics, 222( 1), 109-123. doi:10.1007/s11856-017-1584-x
    • NLM

      Billig Y, Futorny V. Classification of simple cuspidal modules for solenoidal Lie algebras [Internet]. Israel Journal of Mathematics. 2017 ; 222( 1): 109-123.Available from: https://dx.doi.org/10.1007/s11856-017-1584-x
    • Vancouver

      Billig Y, Futorny V. Classification of simple cuspidal modules for solenoidal Lie algebras [Internet]. Israel Journal of Mathematics. 2017 ; 222( 1): 109-123.Available from: https://dx.doi.org/10.1007/s11856-017-1584-x
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subjects: ÁLGEBRA, CURVAS ALGÉBRICAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAKELIAN, Nazar; BORGES FILHO, Herivelto Martins. Frobenius nonclassicality of Fermat curves with respect to cubics. Israel Journal of Mathematics, Jerusalem, v. 218, n. 1, p. 273-297, 2017. Disponível em: < http://dx.doi.org/10.1007/s11856-017-1465-3 > DOI: 10.1007/s11856-017-1465-3.
    • APA

      Arakelian, N., & Borges Filho, H. M. (2017). Frobenius nonclassicality of Fermat curves with respect to cubics. Israel Journal of Mathematics, 218( 1), 273-297. doi:10.1007/s11856-017-1465-3
    • NLM

      Arakelian N, Borges Filho HM. Frobenius nonclassicality of Fermat curves with respect to cubics [Internet]. Israel Journal of Mathematics. 2017 ; 218( 1): 273-297.Available from: http://dx.doi.org/10.1007/s11856-017-1465-3
    • Vancouver

      Arakelian N, Borges Filho HM. Frobenius nonclassicality of Fermat curves with respect to cubics [Internet]. Israel Journal of Mathematics. 2017 ; 218( 1): 273-297.Available from: http://dx.doi.org/10.1007/s11856-017-1465-3
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subject: ESPAÇOS DE HILBERT

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTILLO, Jesús M. F; CUELLAR CARRERA, Wilson Albeiro; FERENCZI, Valentin; MORENO, Yolanda. Complex structures on twisted Hilbert spaces. Israel Journal of Mathematics, Jerusalem, v. 222, n. 2, p. 787-814, 2017. Disponível em: < https://dx.doi.org/10.1007/s11856-017-1605-9 > DOI: 10.1007/s11856-017-1605-9.
    • APA

      Castillo, J. M. F., Cuellar Carrera, W. A., Ferenczi, V., & Moreno, Y. (2017). Complex structures on twisted Hilbert spaces. Israel Journal of Mathematics, 222( 2), 787-814. doi:10.1007/s11856-017-1605-9
    • NLM

      Castillo JMF, Cuellar Carrera WA, Ferenczi V, Moreno Y. Complex structures on twisted Hilbert spaces [Internet]. Israel Journal of Mathematics. 2017 ; 222( 2): 787-814.Available from: https://dx.doi.org/10.1007/s11856-017-1605-9
    • Vancouver

      Castillo JMF, Cuellar Carrera WA, Ferenczi V, Moreno Y. Complex structures on twisted Hilbert spaces [Internet]. Israel Journal of Mathematics. 2017 ; 222( 2): 787-814.Available from: https://dx.doi.org/10.1007/s11856-017-1605-9
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS COM DIVISÃO

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Vitor de Oliveira; GONÇALVES, Jairo Zacarias. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, Jerusalem, v. 210, n. 1, p. 297-321, 2015. Disponível em: < http://dx.doi.org/10.1007/s11856-015-1253-x > DOI: 10.1007/s11856-015-1253-x.
    • APA

      Ferreira, V. de O., & Gonçalves, J. Z. (2015). Free symmetric and unitary pairs in division rings infinite-dimensional over their centers. Israel Journal of Mathematics, 210( 1), 297-321. doi:10.1007/s11856-015-1253-x
    • NLM

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.Available from: http://dx.doi.org/10.1007/s11856-015-1253-x
    • Vancouver

      Ferreira V de O, Gonçalves JZ. Free symmetric and unitary pairs in division rings infinite-dimensional over their centers [Internet]. Israel Journal of Mathematics. 2015 ; 210( 1): 297-321.Available from: http://dx.doi.org/10.1007/s11856-015-1253-x
  • Source: Israel Journal of Mathematics. Unidade: ICMC

    Subject: ÁLGEBRA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRUSSEL, Eric; TENGAN, Eduardo. Tame division algebras of prime period over function fields of p-adic curves. Israel Journal of Mathematics, Jerusalem, v. 201, n. ja 2014, p. 361-371, 2014. Disponível em: < http://dx.doi.org/10.1007/s11856-014-1082-3 > DOI: 10.1007/s11856-014-1082-3.
    • APA

      Brussel, E., & Tengan, E. (2014). Tame division algebras of prime period over function fields of p-adic curves. Israel Journal of Mathematics, 201( ja 2014), 361-371. doi:10.1007/s11856-014-1082-3
    • NLM

      Brussel E, Tengan E. Tame division algebras of prime period over function fields of p-adic curves [Internet]. Israel Journal of Mathematics. 2014 ; 201( ja 2014): 361-371.Available from: http://dx.doi.org/10.1007/s11856-014-1082-3
    • Vancouver

      Brussel E, Tengan E. Tame division algebras of prime period over function fields of p-adic curves [Internet]. Israel Journal of Mathematics. 2014 ; 201( ja 2014): 361-371.Available from: http://dx.doi.org/10.1007/s11856-014-1082-3
  • Source: Israel Journal of Mathematics. Unidade: IME

    Subjects: OPERADORES LINEARES, TEORIA DOS GRAFOS, MATEMÁTICA DA COMPUTAÇÃO

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BACHOC, Christine; DECORTE, Evan; OLIVEIRA FILHO, Fernando Mário de; VALLENTIN, Frank. Spectral bounds for the independence ratio and the chromatic number of an operator. Israel Journal of Mathematics, Jerusalem, v. 202, n. 1, p. 227-254, 2014. Disponível em: < http://dx.doi.org/10.1007/s11856-014-1070-7 > DOI: 10.1007/s11856-014-1070-7.
    • APA

      Bachoc, C., DeCorte, E., Oliveira Filho, F. M. de, & Vallentin, F. (2014). Spectral bounds for the independence ratio and the chromatic number of an operator. Israel Journal of Mathematics, 202( 1), 227-254. doi:10.1007/s11856-014-1070-7
    • NLM

      Bachoc C, DeCorte E, Oliveira Filho FM de, Vallentin F. Spectral bounds for the independence ratio and the chromatic number of an operator [Internet]. Israel Journal of Mathematics. 2014 ; 202( 1): 227-254.Available from: http://dx.doi.org/10.1007/s11856-014-1070-7
    • Vancouver

      Bachoc C, DeCorte E, Oliveira Filho FM de, Vallentin F. Spectral bounds for the independence ratio and the chromatic number of an operator [Internet]. Israel Journal of Mathematics. 2014 ; 202( 1): 227-254.Available from: http://dx.doi.org/10.1007/s11856-014-1070-7
  • Source: Journal of Rural Cooperation. Unidade: FEA

    Subjects: COOPERATIVAS AGRÍCOLAS (COMPETITIVIDADE), COOPERATIVAS AGRÍCOLAS (ASPECTOS ECONÔMICOS), ECONOMIA AGRÍCOLA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZZOBON, Daniela Maria; ZYLBERSZTAJN, Decio; BIJMAN, Jos. How can cooperatives reduce democratic costs: without incurring excessive agency costs. Journal of Rural Cooperation, Jerusalem, v. 40, n. 2, p. 119-144, 2012. Disponível em: < http://www.slu.se/Documents/externwebben/nl-fak/ekonomi/Nyheter/Journal%20of%20Rural%20Cooperation,%2040(2).pdf >.
    • APA

      Pozzobon, D. M., Zylbersztajn, D., & Bijman, J. (2012). How can cooperatives reduce democratic costs: without incurring excessive agency costs. Journal of Rural Cooperation, 40( 2), 119-144. Recuperado de http://www.slu.se/Documents/externwebben/nl-fak/ekonomi/Nyheter/Journal%20of%20Rural%20Cooperation,%2040(2).pdf
    • NLM

      Pozzobon DM, Zylbersztajn D, Bijman J. How can cooperatives reduce democratic costs: without incurring excessive agency costs [Internet]. Journal of Rural Cooperation. 2012 ; 40( 2): 119-144.Available from: http://www.slu.se/Documents/externwebben/nl-fak/ekonomi/Nyheter/Journal%20of%20Rural%20Cooperation,%2040(2).pdf
    • Vancouver

      Pozzobon DM, Zylbersztajn D, Bijman J. How can cooperatives reduce democratic costs: without incurring excessive agency costs [Internet]. Journal of Rural Cooperation. 2012 ; 40( 2): 119-144.Available from: http://www.slu.se/Documents/externwebben/nl-fak/ekonomi/Nyheter/Journal%20of%20Rural%20Cooperation,%2040(2).pdf
  • Source: Israel Journal of Plant Sciences. Unidade: ESALQ

    Subjects: ÁGUAS RESIDUÁRIAS, NITROGÊNIO, CARBONO, IRRIGAÇÃO, PASTAGENS, EFLUENTES

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Adriel Ferreira da; LEAL, Rafael Marques Pereira; HERPIN, Uwe; MELFI, Adolpho José. Carbon and nitrogen dynamics in a Brazilian soil-pasture system irrigated with treated sewage effluent. Israel Journal of Plant Sciences, Jerusalem, v. 59, n. 2-4, p. 147 - 157, 2011. Disponível em: < http://www.sciencefromisrael.com/app/home/contribution.asp?referrer=parent&backto=issue,7,17;journal,2,45;linkingpublicationresults,1:300170,1 > DOI: 10.1560/IJPS.59.2-4.147.
    • APA

      Fonseca, A. F. da, Leal, R. M. P., Herpin, U., & Melfi, A. J. (2011). Carbon and nitrogen dynamics in a Brazilian soil-pasture system irrigated with treated sewage effluent. Israel Journal of Plant Sciences, 59( 2-4), 147 - 157. doi:10.1560/IJPS.59.2-4.147
    • NLM

      Fonseca AF da, Leal RMP, Herpin U, Melfi AJ. Carbon and nitrogen dynamics in a Brazilian soil-pasture system irrigated with treated sewage effluent [Internet]. Israel Journal of Plant Sciences. 2011 ; 59( 2-4): 147 - 157.Available from: http://www.sciencefromisrael.com/app/home/contribution.asp?referrer=parent&backto=issue,7,17;journal,2,45;linkingpublicationresults,1:300170,1
    • Vancouver

      Fonseca AF da, Leal RMP, Herpin U, Melfi AJ. Carbon and nitrogen dynamics in a Brazilian soil-pasture system irrigated with treated sewage effluent [Internet]. Israel Journal of Plant Sciences. 2011 ; 59( 2-4): 147 - 157.Available from: http://www.sciencefromisrael.com/app/home/contribution.asp?referrer=parent&backto=issue,7,17;journal,2,45;linkingpublicationresults,1:300170,1
  • Source: Journal d'Analyse Mathématique. Unidade: IME

    Subject: TEORIA ERGÓDICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERENCZI, Sebastien; FISHER, Albert Meads; TALET, Marina. Minimality and unique ergodicity for adic transformations. Journal d'Analyse Mathématique, Jerusalem, v. 109, n. 1, p. 1-31, 2009. Disponível em: < https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s11854-009-0027-y > DOI: 10.1007/s11854-009-0027-y.
    • APA

      Ferenczi, S., Fisher, A. M., & Talet, M. (2009). Minimality and unique ergodicity for adic transformations. Journal d'Analyse Mathématique, 109( 1), 1-31. doi:10.1007/s11854-009-0027-y
    • NLM

      Ferenczi S, Fisher AM, Talet M. Minimality and unique ergodicity for adic transformations [Internet]. Journal d'Analyse Mathématique. 2009 ; 109( 1): 1-31.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s11854-009-0027-y
    • Vancouver

      Ferenczi S, Fisher AM, Talet M. Minimality and unique ergodicity for adic transformations [Internet]. Journal d'Analyse Mathématique. 2009 ; 109( 1): 1-31.Available from: https://doi-org.ez67.periodicos.capes.gov.br/10.1007/s11854-009-0027-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022