Filters : "Topology and its Applications" Limpar

Filters



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, TEORIA DOS CONJUNTOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZMÁN, O. et al. Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, v. 305, n. artigo 107872, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107872. Acesso em: 03 dez. 2022.
    • APA

      Guzmán, O., Hrušák, M., Rodrigues, V. de O., Todorcevic, S., & Tomita, A. H. (2022). Maximal almost disjoint families and pseudocompactness of hyperspaces. Topology and its Applications, 305( artigo 107872), 1-24. doi:10.1016/j.topol.2021.107872
    • NLM

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
    • Vancouver

      Guzmán O, Hrušák M, Rodrigues V de O, Todorcevic S, Tomita AH. Maximal almost disjoint families and pseudocompactness of hyperspaces [Internet]. Topology and its Applications. 2022 ; 305( artigo 107872): 1-24.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107872
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TOPOLOGIA, GRUPOS TOPOLÓGICOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki e FRAGA, Juliane Trianon. Some pseudocompact-like properties in certain topological groups. Topology and its Applications, v. 314, n. artigo 108111, p. 1-18, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2022.108111. Acesso em: 03 dez. 2022.
    • APA

      Tomita, A. H., & Fraga, J. T. (2022). Some pseudocompact-like properties in certain topological groups. Topology and its Applications, 314( artigo 108111), 1-18. doi:10.1016/j.topol.2022.108111
    • NLM

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
    • Vancouver

      Tomita AH, Fraga JT. Some pseudocompact-like properties in certain topological groups [Internet]. Topology and its Applications. 2022 ; 314( artigo 108111): 1-18.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2022.108111
  • Source: Topology and its Applications. Unidade: IME

    Subject: GRUPOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, v. 297, n. art. 107703, p. 1-23, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107703. Acesso em: 03 dez. 2022.
    • APA

      Bellini, M. K., Boero, A. C., Rodrigues, V. de O., & Tomita, A. H. (2021). Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, 297( art. 107703), 1-23. doi:10.1016/j.topol.2021.107703
    • NLM

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
    • Vancouver

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107703
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, v. 296, n. art. 107684, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107684. Acesso em: 03 dez. 2022.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, 296( art. 107684), 1-14. doi:10.1016/j.topol.2021.107684
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107684
  • Source: Topology and its Applications. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, LAÇOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima et al. Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, v. 293, n. Artigo 107560, p. 1-16, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107560. Acesso em: 03 dez. 2022.
    • APA

      Gonçalves, D. L., Guaschi, J., Ocampo, O., & Pereiro, C. de M. e. (2021). Crystallographic groups and flat manifolds from surface braid groups. Topology and its Applications, 293( Artigo 107560), 1-16. doi:10.1016/j.topol.2020.107560
    • NLM

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
    • Vancouver

      Gonçalves DL, Guaschi J, Ocampo O, Pereiro C de M e. Crystallographic groups and flat manifolds from surface braid groups [Internet]. Topology and its Applications. 2021 ; 293( Artigo 107560): 1-16.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107560
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, COHOMOLOGIA, HOMOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de e SANTOS, Edivaldo Lopes dos e SILVA, Nelson Antonio. On the length of cohomology spheres. Topology and its Applications, v. 293, p. 1-11, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107569. Acesso em: 03 dez. 2022.
    • APA

      Mattos, D. de, Santos, E. L. dos, & Silva, N. A. (2021). On the length of cohomology spheres. Topology and its Applications, 293, 1-11. doi:10.1016/j.topol.2020.107569
    • NLM

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
    • Vancouver

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107569
  • Source: Topology and its Applications. Unidade: IME

    Subject: TOPOLOGIA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa e TKACHUK, V. V. e WILSON, R. G. On discrete reflexivity of Lindelöf degree and pseudocharacter. Topology and its Applications, v. 300, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107764. Acesso em: 03 dez. 2022.
    • APA

      Alas, O. T., Tkachuk, V. V., & Wilson, R. G. (2021). On discrete reflexivity of Lindelöf degree and pseudocharacter. Topology and its Applications, 300. doi:10.1016/j.topol.2021.107764
    • NLM

      Alas OT, Tkachuk VV, Wilson RG. On discrete reflexivity of Lindelöf degree and pseudocharacter [Internet]. Topology and its Applications. 2021 ; 300[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107764
    • Vancouver

      Alas OT, Tkachuk VV, Wilson RG. On discrete reflexivity of Lindelöf degree and pseudocharacter [Internet]. Topology and its Applications. 2021 ; 300[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107764
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, TOPOLOGIA ALGÉBRICA

    Available on 2022-12-30Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek e GONÇALVES, Daciberg Lima e WONG, Peter. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, v. 293, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107567. Acesso em: 03 dez. 2022.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2021). On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107567
    • NLM

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107567
  • Source: Topology and its Applications. Unidade: ICMC

    Subject: TOPOLOGIA CONJUNTÍSTICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e DUZI, Matheus. Topological games of bounded selections. Topology and its Applications, v. 291, p. 1-24, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107449. Acesso em: 03 dez. 2022.
    • APA

      Aurichi, L. F., & Duzi, M. (2021). Topological games of bounded selections. Topology and its Applications, 291, 1-24. doi:10.1016/j.topol.2020.107449
    • NLM

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107449
    • Vancouver

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107449
  • Source: Topology and its Applications. Unidade: IME

    Subject: TEORIA DOS GRUPOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANKARAN, Parameswaran e WONG, Peter. Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, v. 293, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107568. Acesso em: 03 dez. 2022.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2021). Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107568
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107568
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107568
  • Source: Topology and its Applications. Unidade: ICMC

    Subject: TOPOLOGIA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KORINMAN, Julien. Unicity for representations of reduced stated skein algebras. Topology and its Applications, v. 293, p. 1-28, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107570. Acesso em: 03 dez. 2022.
    • APA

      Korinman, J. (2021). Unicity for representations of reduced stated skein algebras. Topology and its Applications, 293, 1-28. doi:10.1016/j.topol.2020.107570
    • NLM

      Korinman J. Unicity for representations of reduced stated skein algebras [Internet]. Topology and its Applications. 2021 ; 293 1-28.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107570
    • Vancouver

      Korinman J. Unicity for representations of reduced stated skein algebras [Internet]. Topology and its Applications. 2021 ; 293 1-28.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107570
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff e RODRIGUES, Vinicius de Oliveira e TOMITA, Artur Hideyuki. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, v. 294, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2021.107653. Acesso em: 03 dez. 2022.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, 294, 1-22. doi:10.1016/j.topol.2021.107653
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2021.107653
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, S. e TOMITA, Artur Hideyuki. Selectively pseudocompact groups and p-compactness. Topology and its Applications, v. 285, n. art. 107380, p. 1-7, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107380. Acesso em: 03 dez. 2022.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2020). Selectively pseudocompact groups and p-compactness. Topology and its Applications, 285( art. 107380), 1-7. doi:10.1016/j.topol.2020.107380
    • NLM

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107380
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: SUPERFÍCIES DE RIEMANN, GRUPOS DE LIE, GRUPOS FUCHSIANOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANANIN, Alexandre et al. Hyperbolic 2-spheres with cone singularities. Topology and its Applications, v. 272, p. 1-23, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2020.107073. Acesso em: 03 dez. 2022.
    • APA

      Ananin, A., Ferreira, C. H. G., Lee, J., & Reis Jr., J. dos. (2020). Hyperbolic 2-spheres with cone singularities. Topology and its Applications, 272, 1-23. doi:10.1016/j.topol.2020.107073
    • NLM

      Ananin A, Ferreira CHG, Lee J, Reis Jr. J dos. Hyperbolic 2-spheres with cone singularities [Internet]. Topology and its Applications. 2020 ; 272 1-23.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107073
    • Vancouver

      Ananin A, Ferreira CHG, Lee J, Reis Jr. J dos. Hyperbolic 2-spheres with cone singularities [Internet]. Topology and its Applications. 2020 ; 272 1-23.[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2020.107073
  • Source: Topology and its Applications. Unidade: ICMC

    Subject: TOPOLOGIA CONJUNTÍSTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERCADO, Henry Jose Gullo e AURICHI, Leandro Fiorini. Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, v. No 2019, p. 1-11, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.topol.2019.106891. Acesso em: 03 dez. 2022.
    • APA

      Mercado, H. J. G., & Aurichi, L. F. (2019). Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, No 2019, 1-11. doi:10.1016/j.topol.2019.106891
    • NLM

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.106891
    • Vancouver

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.106891
  • Source: Topology and its Applications. Unidade: IME

    Subject: GRUPOS TOPOLÓGICOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, v. 259, p. 347-364, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.topol.2019.02.040. Acesso em: 03 dez. 2022.
    • APA

      Tomita, A. H. (2019). A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, 259, 347-364. doi:10.1016/j.topol.2019.02.040
    • NLM

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
    • Vancouver

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TOPOLOGIA CONJUNTÍSTICA, BORNOLOGIA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e MEZABARBA, Renan Maneli. Bornologies and filters applied to selection principles and function spaces. Topology and its Applications, v. 258, p. 187-201, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.topol.2017.12.031. Acesso em: 03 dez. 2022.
    • APA

      Aurichi, L. F., & Mezabarba, R. M. (2019). Bornologies and filters applied to selection principles and function spaces. Topology and its Applications, 258, 187-201. doi:10.1016/j.topol.2017.12.031
    • NLM

      Aurichi LF, Mezabarba RM. Bornologies and filters applied to selection principles and function spaces [Internet]. Topology and its Applications. 2019 ; 258 187-201.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2017.12.031
    • Vancouver

      Aurichi LF, Mezabarba RM. Bornologies and filters applied to selection principles and function spaces [Internet]. Topology and its Applications. 2019 ; 258 187-201.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2017.12.031
  • Source: Topology and its Applications. Unidade: IME

    Subject: ESPAÇOS DE BANACH

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBEIRO, André Santoleri Villa e FAJARDO, Rogério Augusto dos Santos. Non homeomorphic hereditarily weakly Koszmider spaces. Topology and its Applications, v. 265, p. 1-15, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.topol.2019.07.006. Acesso em: 03 dez. 2022.
    • APA

      Barbeiro, A. S. V., & Fajardo, R. A. dos S. (2019). Non homeomorphic hereditarily weakly Koszmider spaces. Topology and its Applications, 265, 1-15. doi:10.1016/j.topol.2019.07.006
    • NLM

      Barbeiro ASV, Fajardo RA dos S. Non homeomorphic hereditarily weakly Koszmider spaces [Internet]. Topology and its Applications. 2019 ; 265 1-15.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.07.006
    • Vancouver

      Barbeiro ASV, Fajardo RA dos S. Non homeomorphic hereditarily weakly Koszmider spaces [Internet]. Topology and its Applications. 2019 ; 265 1-15.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.07.006
  • Source: Topology and its Applications. Unidade: IME

    Subject: GRUPOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff et al. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, v. 267, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2019.106894. Acesso em: 03 dez. 2022.
    • APA

      Bellini, M. K., Boero, A. C., Castro-Pereira, I., Rodrigues, V. de O., & Tomita, A. H. (2019). Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, 267. doi:10.1016/j.topol.2019.106894
    • NLM

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2019.106894
    • Vancouver

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267[citado 2022 dez. 03 ] Available from: https://doi.org/10.1016/j.topol.2019.106894
  • Source: Topology and its Applications. Unidade: ICMC

    Subject: TOPOLOGIA CONJUNTÍSTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini e DIAS, Rodrigo Roque. A minicourse on topological games. Topology and its Applications, v. 258, p. 305-335, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.topol.2019.02.057. Acesso em: 03 dez. 2022.
    • APA

      Aurichi, L. F., & Dias, R. R. (2019). A minicourse on topological games. Topology and its Applications, 258, 305-335. doi:10.1016/j.topol.2019.02.057
    • NLM

      Aurichi LF, Dias RR. A minicourse on topological games [Internet]. Topology and its Applications. 2019 ; 258 305-335.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.02.057
    • Vancouver

      Aurichi LF, Dias RR. A minicourse on topological games [Internet]. Topology and its Applications. 2019 ; 258 305-335.[citado 2022 dez. 03 ] Available from: http://dx.doi.org/10.1016/j.topol.2019.02.057

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022