Filtros : "Topology and its Applications" Limpar

Filtros



Refine with date range


  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; BOERO, Ana Carolina; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, Amsterdam, Elsevier, v. 297, n. art. 107703, p. 1-23, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2021.107703 > DOI: 10.1016/j.topol.2021.107703.
    • APA

      Bellini, M. K., Boero, A. C., Rodrigues, V. de O., & Tomita, A. H. (2021). Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters. Topology and its Applications, 297( art. 107703), 1-23. doi:10.1016/j.topol.2021.107703
    • NLM

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.Available from: https://doi.org/10.1016/j.topol.2021.107703
    • Vancouver

      Bellini MK, Boero AC, Rodrigues V de O, Tomita AH. Algebraic structure of countably compact non-torsion Abelian groups of size continuum from selective ultrafilters [Internet]. Topology and its Applications. 2021 ; 297( art. 107703): 1-23.Available from: https://doi.org/10.1016/j.topol.2021.107703
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, Amsterdam, Elsevier, v. 296, n. art. 107684, p. 1-14, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2021.107684 > DOI: 10.1016/j.topol.2021.107684.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences. Topology and its Applications, 296( art. 107684), 1-14. doi:10.1016/j.topol.2021.107684
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.Available from: https://doi.org/10.1016/j.topol.2021.107684
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. Forcing a classification of non-torsion Abelian groups of size at most 2c with non-trivial convergent sequences [Internet]. Topology and its Applications. 2021 ; 296( art. 107684): 1-14.Available from: https://doi.org/10.1016/j.topol.2021.107684
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DA DIMENSÃO, COHOMOLOGIA, HOMOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MATTOS, Denise de; SANTOS, Edivaldo Lopes dos; SILVA, Nelson Antonio. On the length of cohomology spheres. Topology and its Applications, Amsterdam, v. 293, p. 1-11, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107569 > DOI: 10.1016/j.topol.2020.107569.
    • APA

      Mattos, D. de, Santos, E. L. dos, & Silva, N. A. (2021). On the length of cohomology spheres. Topology and its Applications, 293, 1-11. doi:10.1016/j.topol.2020.107569
    • NLM

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.Available from: https://doi.org/10.1016/j.topol.2020.107569
    • Vancouver

      Mattos D de, Santos EL dos, Silva NA. On the length of cohomology spheres [Internet]. Topology and its Applications. 2021 ; 293 1-11.Available from: https://doi.org/10.1016/j.topol.2020.107569
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini; DUZI, Matheus. Topological games of bounded selections. Topology and its Applications, Amsterdam, v. 291, p. 1-24, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107449 > DOI: 10.1016/j.topol.2020.107449.
    • APA

      Aurichi, L. F., & Duzi, M. (2021). Topological games of bounded selections. Topology and its Applications, 291, 1-24. doi:10.1016/j.topol.2020.107449
    • NLM

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.Available from: https://doi.org/10.1016/j.topol.2020.107449
    • Vancouver

      Aurichi LF, Duzi M. Topological games of bounded selections [Internet]. Topology and its Applications. 2021 ; 291 1-24.Available from: https://doi.org/10.1016/j.topol.2020.107449
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS DE HOMOTOPIA, TOPOLOGIA ALGÉBRICA

    Disponível em 2022-12-30Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLASIŃSKI, Marek; GONÇALVES, Daciberg Lima; WONG, Peter. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, Amsterdam, v. 293, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107567 > DOI: 10.1016/j.topol.2020.107567.
    • APA

      Golasiński, M., Gonçalves, D. L., & Wong, P. (2021). On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')]. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107567
    • NLM

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107567
    • Vancouver

      Golasiński M, Gonçalves DL, Wong P. On exponent and nilpotency of [Ω('S POT. r=1'),Ω('KP POT. n')] [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107567
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TEORIA DOS GRUPOS

    Disponível em 2022-06-05Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; SANKARAN, Parameswaran; WONG, Peter. Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, Amsterdam, v. 293, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107568 > DOI: 10.1016/j.topol.2020.107568.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2021). Twisted conjugacy in fundamental groups of geometric 3-manifolds. Topology and its Applications, 293. doi:10.1016/j.topol.2020.107568
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107568
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in fundamental groups of geometric 3-manifolds [Internet]. Topology and its Applications. 2021 ; 293Available from: https://doi.org/10.1016/j.topol.2020.107568
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KORINMAN, Julien. Unicity for representations of reduced stated skein algebras. Topology and its Applications, Amsterdam, v. 293, p. 1-28, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2020.107570 > DOI: 10.1016/j.topol.2020.107570.
    • APA

      Korinman, J. (2021). Unicity for representations of reduced stated skein algebras. Topology and its Applications, 293, 1-28. doi:10.1016/j.topol.2020.107570
    • NLM

      Korinman J. Unicity for representations of reduced stated skein algebras [Internet]. Topology and its Applications. 2021 ; 293 1-28.Available from: https://doi.org/10.1016/j.topol.2020.107570
    • Vancouver

      Korinman J. Unicity for representations of reduced stated skein algebras [Internet]. Topology and its Applications. 2021 ; 293 1-28.Available from: https://doi.org/10.1016/j.topol.2020.107570
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TEORIA DOS GRUPOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, Amsterdam, Elsevier, v. 294, p. 1-22, 2021. Disponível em: < https://doi.org/10.1016/j.topol.2021.107653 > DOI: 10.1016/j.topol.2021.107653.
    • APA

      Bellini, M. K., Rodrigues, V. de O., & Tomita, A. H. (2021). On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter. Topology and its Applications, 294, 1-22. doi:10.1016/j.topol.2021.107653
    • NLM

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.Available from: https://doi.org/10.1016/j.topol.2021.107653
    • Vancouver

      Bellini MK, Rodrigues V de O, Tomita AH. On countably compact group topologies without non-trivial convergent sequences on Q(κ) for arbitrarily large κ and a selective ultrafilter [Internet]. Topology and its Applications. 2021 ; 294 1-22.Available from: https://doi.org/10.1016/j.topol.2021.107653
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: SUPERFÍCIES DE RIEMANN, GRUPOS DE LIE, GRUPOS FUCHSIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANANIN, Alexandre; FERREIRA, Carlos Henrique Grossi; LEE, Jaejeong; REIS JR., João dos. Hyperbolic 2-spheres with cone singularities. Topology and its Applications, Amsterdam, v. 272, p. 1-23, 2020. Disponível em: < https://doi.org/10.1016/j.topol.2020.107073 > DOI: 10.1016/j.topol.2020.107073.
    • APA

      Ananin, A., Ferreira, C. H. G., Lee, J., & Reis Jr., J. dos. (2020). Hyperbolic 2-spheres with cone singularities. Topology and its Applications, 272, 1-23. doi:10.1016/j.topol.2020.107073
    • NLM

      Ananin A, Ferreira CHG, Lee J, Reis Jr. J dos. Hyperbolic 2-spheres with cone singularities [Internet]. Topology and its Applications. 2020 ; 272 1-23.Available from: https://doi.org/10.1016/j.topol.2020.107073
    • Vancouver

      Ananin A, Ferreira CHG, Lee J, Reis Jr. J dos. Hyperbolic 2-spheres with cone singularities [Internet]. Topology and its Applications. 2020 ; 272 1-23.Available from: https://doi.org/10.1016/j.topol.2020.107073
  • Source: Topology and its Applications. Unidade: IME

    Subjects: GRUPOS TOPOLÓGICOS, TOPOLOGIA, ESPAÇOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA-FERREIRA, S.; TOMITA, Artur Hideyuki. Selectively pseudocompact groups and p-compactness. Topology and its Applications, Amsterdam, v. 285, n. art. 107380, p. 1-7, 2020. Disponível em: < https://doi.org/10.1016/j.topol.2020.107380 > DOI: 10.1016/j.topol.2020.107380.
    • APA

      Garcia-Ferreira, S., & Tomita, A. H. (2020). Selectively pseudocompact groups and p-compactness. Topology and its Applications, 285( art. 107380), 1-7. doi:10.1016/j.topol.2020.107380
    • NLM

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.Available from: https://doi.org/10.1016/j.topol.2020.107380
    • Vancouver

      Garcia-Ferreira S, Tomita AH. Selectively pseudocompact groups and p-compactness [Internet]. Topology and its Applications. 2020 ; 285( art. 107380): 1-7.Available from: https://doi.org/10.1016/j.topol.2020.107380
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MERCADO, Henry Jose Gullo; AURICHI, Leandro Fiorini. Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, Amsterdam, v. No 2019, p. 1-11, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2019.106891 > DOI: 10.1016/j.topol.2019.106891.
    • APA

      Mercado, H. J. G., & Aurichi, L. F. (2019). Maximal topologies with respect to a family of discrete subsets. Topology and its Applications, No 2019, 1-11. doi:10.1016/j.topol.2019.106891
    • NLM

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.Available from: http://dx.doi.org/10.1016/j.topol.2019.106891
    • Vancouver

      Mercado HJG, Aurichi LF. Maximal topologies with respect to a family of discrete subsets [Internet]. Topology and its Applications. 2019 ; No 2019 1-11.Available from: http://dx.doi.org/10.1016/j.topol.2019.106891
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TOMITA, Artur Hideyuki. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, Amsterdam, v. 259, p. 347-364, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2019.02.040 > DOI: 10.1016/j.topol.2019.02.040.
    • APA

      Tomita, A. H. (2019). A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences. Topology and its Applications, 259, 347-364. doi:10.1016/j.topol.2019.02.040
    • NLM

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
    • Vancouver

      Tomita AH. A van Douwen-like ZFC theorem for small powers of countably compact groups without non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 259 347-364.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.040
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TOPOLOGIA CONJUNTÍSTICA, BORNOLOGIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini; MEZABARBA, Renan Maneli. Bornologies and filters applied to selection principles and function spaces. Topology and its Applications, Amsterdam, v. 258, p. 187-201, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2017.12.031 > DOI: 10.1016/j.topol.2017.12.031.
    • APA

      Aurichi, L. F., & Mezabarba, R. M. (2019). Bornologies and filters applied to selection principles and function spaces. Topology and its Applications, 258, 187-201. doi:10.1016/j.topol.2017.12.031
    • NLM

      Aurichi LF, Mezabarba RM. Bornologies and filters applied to selection principles and function spaces [Internet]. Topology and its Applications. 2019 ; 258 187-201.Available from: http://dx.doi.org/10.1016/j.topol.2017.12.031
    • Vancouver

      Aurichi LF, Mezabarba RM. Bornologies and filters applied to selection principles and function spaces [Internet]. Topology and its Applications. 2019 ; 258 187-201.Available from: http://dx.doi.org/10.1016/j.topol.2017.12.031
  • Source: Topology and its Applications. Unidade: IME

    Assunto: GRUPOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLINI, Matheus Koveroff; BOERO, Ana Carolina; CASTRO-PEREIRA, Irene; RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, Amsterdam, v. 267, 2019. Disponível em: < https://doi.org/10.1016/j.topol.2019.106894 > DOI: 10.1016/j.topol.2019.106894.
    • APA

      Bellini, M. K., Boero, A. C., Castro-Pereira, I., Rodrigues, V. de O., & Tomita, A. H. (2019). Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences. Topology and its Applications, 267. doi:10.1016/j.topol.2019.106894
    • NLM

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267Available from: https://doi.org/10.1016/j.topol.2019.106894
    • Vancouver

      Bellini MK, Boero AC, Castro-Pereira I, Rodrigues V de O, Tomita AH. Countably compact group topologies on non-torsion Abelian groups of size continuum with non-trivial convergent sequences [Internet]. Topology and its Applications. 2019 ; 267Available from: https://doi.org/10.1016/j.topol.2019.106894
  • Source: Topology and its Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBEIRO, André Santoleri Villa; FAJARDO, Rogério Augusto dos Santos. Non homeomorphic hereditarily weakly Koszmider spaces. Topology and its Applications, Amsterdam, v. 265, p. 1-15, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2019.07.006 > DOI: 10.1016/j.topol.2019.07.006.
    • APA

      Barbeiro, A. S. V., & Fajardo, R. A. dos S. (2019). Non homeomorphic hereditarily weakly Koszmider spaces. Topology and its Applications, 265, 1-15. doi:10.1016/j.topol.2019.07.006
    • NLM

      Barbeiro ASV, Fajardo RA dos S. Non homeomorphic hereditarily weakly Koszmider spaces [Internet]. Topology and its Applications. 2019 ; 265 1-15.Available from: http://dx.doi.org/10.1016/j.topol.2019.07.006
    • Vancouver

      Barbeiro ASV, Fajardo RA dos S. Non homeomorphic hereditarily weakly Koszmider spaces [Internet]. Topology and its Applications. 2019 ; 265 1-15.Available from: http://dx.doi.org/10.1016/j.topol.2019.07.006
  • Source: Topology and its Applications. Unidade: ICMC

    Assunto: TOPOLOGIA CONJUNTÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AURICHI, Leandro Fiorini; DIAS, Rodrigo Roque. A minicourse on topological games. Topology and its Applications, Amsterdam, v. 258, p. 305-335, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2019.02.057 > DOI: 10.1016/j.topol.2019.02.057.
    • APA

      Aurichi, L. F., & Dias, R. R. (2019). A minicourse on topological games. Topology and its Applications, 258, 305-335. doi:10.1016/j.topol.2019.02.057
    • NLM

      Aurichi LF, Dias RR. A minicourse on topological games [Internet]. Topology and its Applications. 2019 ; 258 305-335.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.057
    • Vancouver

      Aurichi LF, Dias RR. A minicourse on topological games [Internet]. Topology and its Applications. 2019 ; 258 305-335.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.057
  • Source: Topology and its Applications. Unidade: IME

    Assunto: TOPOLOGIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALAS, Ofélia Teresa; JUNQUEIRA, Lucia Renato; WILSON, Richard Gordon. On linearly H-closed spaces. Topology and its Applications, Amsterdam, v. 258, p. 161-171, 2019. Disponível em: < http://dx.doi.org/10.1016/j.topol.2019.02.014 > DOI: 10.1016/j.topol.2019.02.014.
    • APA

      Alas, O. T., Junqueira, L. R., & Wilson, R. G. (2019). On linearly H-closed spaces. Topology and its Applications, 258, 161-171. doi:10.1016/j.topol.2019.02.014
    • NLM

      Alas OT, Junqueira LR, Wilson RG. On linearly H-closed spaces [Internet]. Topology and its Applications. 2019 ; 258 161-171.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.014
    • Vancouver

      Alas OT, Junqueira LR, Wilson RG. On linearly H-closed spaces [Internet]. Topology and its Applications. 2019 ; 258 161-171.Available from: http://dx.doi.org/10.1016/j.topol.2019.02.014
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES, GEOMETRIA SIMPLÉTICA, FORMAS DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIRA, F. Assunção de Brito; DOMITRZ, W; ATIQUE, Roberta Godoi Wik. Classification of transversal Lagrangian stars. Topology and its Applications, Amsterdam, v. 235, p. 352–367, 2018. Disponível em: < http://dx.doi.org/10.1016/j.topol.2017.11.022 > DOI: 10.1016/j.topol.2017.11.022.
    • APA

      Lira, F. A. de B., Domitrz, W., & Atique, R. G. W. (2018). Classification of transversal Lagrangian stars. Topology and its Applications, 235, 352–367. doi:10.1016/j.topol.2017.11.022
    • NLM

      Lira FA de B, Domitrz W, Atique RGW. Classification of transversal Lagrangian stars [Internet]. Topology and its Applications. 2018 ; 235 352–367.Available from: http://dx.doi.org/10.1016/j.topol.2017.11.022
    • Vancouver

      Lira FA de B, Domitrz W, Atique RGW. Classification of transversal Lagrangian stars [Internet]. Topology and its Applications. 2018 ; 235 352–367.Available from: http://dx.doi.org/10.1016/j.topol.2017.11.022
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty A. de; LEDESMA, Guido G. E; MANZOLI NETO, Oziride; VAGO, Gioia Maria. Lyapunov graphs for circle valued functions. Topology and its Applications, Amstedam, v. 245, p. 62-91, 2018. Disponível em: < http://dx.doi.org/10.1016/j.topol.2018.06.008 > DOI: 10.1016/j.topol.2018.06.008.
    • APA

      Rezende, K. A. de, Ledesma, G. G. E., Manzoli Neto, O., & Vago, G. M. (2018). Lyapunov graphs for circle valued functions. Topology and its Applications, 245, 62-91. doi:10.1016/j.topol.2018.06.008
    • NLM

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.Available from: http://dx.doi.org/10.1016/j.topol.2018.06.008
    • Vancouver

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.Available from: http://dx.doi.org/10.1016/j.topol.2018.06.008
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia H; MANOEL, Miriam Garcia. Relative equivariants under compact Lie groups. Topology and its Applications, Amsterdam, v. 234, p. 474-487, 2018. Disponível em: < http://dx.doi.org/10.1016/j.topol.2017.11.011 > DOI: 10.1016/j.topol.2017.11.011.
    • APA

      Baptistelli, P. H., & Manoel, M. G. (2018). Relative equivariants under compact Lie groups. Topology and its Applications, 234, 474-487. doi:10.1016/j.topol.2017.11.011
    • NLM

      Baptistelli PH, Manoel MG. Relative equivariants under compact Lie groups [Internet]. Topology and its Applications. 2018 ; 234 474-487.Available from: http://dx.doi.org/10.1016/j.topol.2017.11.011
    • Vancouver

      Baptistelli PH, Manoel MG. Relative equivariants under compact Lie groups [Internet]. Topology and its Applications. 2018 ; 234 474-487.Available from: http://dx.doi.org/10.1016/j.topol.2017.11.011

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021