Filters : "Real and Complex Singularities" Limpar

Filters



Refine with date range


  • Source: Real and Complex Singularities. Unidade: ICMC

    Subject: SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ, Victor Hugo Jorge e RIZZIOLLI, Elíris Cristina e SAIA, Marcelo José. Whitney equisingularity, Euler obstruction and invariants of map germs from 'CPOT.n' to 'CPOT.3', n>3. Real and Complex Singularities. Tradução . Cambridge: Birkhauser, 2006. . . Acesso em: 02 out. 2022.
    • APA

      Pérez, V. H. J., Rizziolli, E. C., & Saia, M. J. (2006). Whitney equisingularity, Euler obstruction and invariants of map germs from 'CPOT.n' to 'CPOT.3', n>3. In Real and Complex Singularities. Cambridge: Birkhauser.
    • NLM

      Pérez VHJ, Rizziolli EC, Saia MJ. Whitney equisingularity, Euler obstruction and invariants of map germs from 'CPOT.n' to 'CPOT.3', n>3. In: Real and Complex Singularities. Cambridge: Birkhauser; 2006. [citado 2022 out. 02 ]
    • Vancouver

      Pérez VHJ, Rizziolli EC, Saia MJ. Whitney equisingularity, Euler obstruction and invariants of map germs from 'CPOT.n' to 'CPOT.3', n>3. In: Real and Complex Singularities. Cambridge: Birkhauser; 2006. [citado 2022 out. 02 ]
  • Source: Real and Complex Singularities. Unidade: ICMC

    Subject: SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOND, D. Real and complex singularities: Preface. Real and Complex Singularities. New York: Marcel Dekker. . Acesso em: 02 out. 2022. , 2003
    • APA

      Mond, D. (2003). Real and complex singularities: Preface. Real and Complex Singularities. New York: Marcel Dekker.
    • NLM

      Mond D. Real and complex singularities: Preface. Real and Complex Singularities. 2003 ;[citado 2022 out. 02 ]
    • Vancouver

      Mond D. Real and complex singularities: Preface. Real and Complex Singularities. 2003 ;[citado 2022 out. 02 ]
  • Source: Real and Complex Singularities. Unidade: ICMC

    Subject: TOPOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOND, D. e ATIQUE, Roberta Godoi Wik. Not all codimension 1 germs have good real pictures. Real and Complex Singularities. Tradução . New York: Marcel Dekker, 2003. . . Acesso em: 02 out. 2022.
    • APA

      Mond, D., & Atique, R. G. W. (2003). Not all codimension 1 germs have good real pictures. In Real and Complex Singularities. New York: Marcel Dekker.
    • NLM

      Mond D, Atique RGW. Not all codimension 1 germs have good real pictures. In: Real and Complex Singularities. New York: Marcel Dekker; 2003. [citado 2022 out. 02 ]
    • Vancouver

      Mond D, Atique RGW. Not all codimension 1 germs have good real pictures. In: Real and Complex Singularities. New York: Marcel Dekker; 2003. [citado 2022 out. 02 ]
  • Source: Real and Complex Singularities. Unidade: ICMC

    Subject: TOPOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ, Victor Hugo Jorge. Polar multiplicities and equisingularity of map germs from "C POT. 3" to "C POT. 4". Real and Complex Singularities. Tradução . New York: Marcel Dekker, 2003. . . Acesso em: 02 out. 2022.
    • APA

      Pérez, V. H. J. (2003). Polar multiplicities and equisingularity of map germs from "C POT. 3" to "C POT. 4". In Real and Complex Singularities. New York: Marcel Dekker.
    • NLM

      Pérez VHJ. Polar multiplicities and equisingularity of map germs from "C POT. 3" to "C POT. 4". In: Real and Complex Singularities. New York: Marcel Dekker; 2003. [citado 2022 out. 02 ]
    • Vancouver

      Pérez VHJ. Polar multiplicities and equisingularity of map germs from "C POT. 3" to "C POT. 4". In: Real and Complex Singularities. New York: Marcel Dekker; 2003. [citado 2022 out. 02 ]
  • Source: Real and Complex Singularities. Unidade: ICMC

    Subject: TOPOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUTIERREZ, Carlos e RUAS, Maria Aparecida Soares. Indices of Newton non-degenerate vector fields and a conjecture of Loewner for surfaces in "R POT.4". Real and Complex Singularities. Tradução . New York: Marcel Dekker, 2003. . . Acesso em: 02 out. 2022.
    • APA

      Gutierrez, C., & Ruas, M. A. S. (2003). Indices of Newton non-degenerate vector fields and a conjecture of Loewner for surfaces in "R POT.4". In Real and Complex Singularities. New York: Marcel Dekker.
    • NLM

      Gutierrez C, Ruas MAS. Indices of Newton non-degenerate vector fields and a conjecture of Loewner for surfaces in "R POT.4". In: Real and Complex Singularities. New York: Marcel Dekker; 2003. [citado 2022 out. 02 ]
    • Vancouver

      Gutierrez C, Ruas MAS. Indices of Newton non-degenerate vector fields and a conjecture of Loewner for surfaces in "R POT.4". In: Real and Complex Singularities. New York: Marcel Dekker; 2003. [citado 2022 out. 02 ]
  • Source: Real and Complex Singularities. Unidade: ICMC

    Subjects: GEOMETRIA, SINGULARIDADES

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUAS, Maria Aparecida Soares e SAIA, M J. Polyhedron of equisingularity of germms of hypersurfaces. Real and Complex Singularities. Tradução . New York: Longman, 1995. . . Acesso em: 02 out. 2022.
    • APA

      Ruas, M. A. S., & Saia, M. J. (1995). Polyhedron of equisingularity of germms of hypersurfaces. In Real and Complex Singularities. New York: Longman.
    • NLM

      Ruas MAS, Saia MJ. Polyhedron of equisingularity of germms of hypersurfaces. In: Real and Complex Singularities. New York: Longman; 1995. [citado 2022 out. 02 ]
    • Vancouver

      Ruas MAS, Saia MJ. Polyhedron of equisingularity of germms of hypersurfaces. In: Real and Complex Singularities. New York: Longman; 1995. [citado 2022 out. 02 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022