Filtros : "Mathematische Zeitschrift" Limpar

Filtros



Refine with date range


  • Source: Mathematische Zeitschrift. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CINTRA, Willian; SANTOS JÚNIOR, João R.; SICILIANO, Gaetano; SUÁREZ, Antonio. Existence results of positive solutions for Kirchhoff type equations via bifurcation methods. Mathematische Zeitschrift, Heidelberg, Springer, v. 295, p. 1143-1161, 2020. Disponível em: < http://dx.doi.org/10.1007/s00209-019-02385-8 > DOI: 10.1007/s00209-019-02385-8.
    • APA

      Cintra, W., Santos Júnior, J. R., Siciliano, G., & Suárez, A. (2020). Existence results of positive solutions for Kirchhoff type equations via bifurcation methods. Mathematische Zeitschrift, 295, 1143-1161. doi:10.1007/s00209-019-02385-8
    • NLM

      Cintra W, Santos Júnior JR, Siciliano G, Suárez A. Existence results of positive solutions for Kirchhoff type equations via bifurcation methods [Internet]. Mathematische Zeitschrift. 2020 ; 295 1143-1161.Available from: http://dx.doi.org/10.1007/s00209-019-02385-8
    • Vancouver

      Cintra W, Santos Júnior JR, Siciliano G, Suárez A. Existence results of positive solutions for Kirchhoff type equations via bifurcation methods [Internet]. Mathematische Zeitschrift. 2020 ; 295 1143-1161.Available from: http://dx.doi.org/10.1007/s00209-019-02385-8
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: GEOMETRIA AFIM, SINGULARIDADES, POLINÔMIOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARNIK, Michal; JELONEK, Zbigniew; RUAS, Maria Aparecida Soares. Whitney theorem for complex polynomial mappings. Mathematische Zeitschrift, Heidelberg, Springer, v. 295, n. 3-4, p. 1039-1065, 2020. Disponível em: < https://doi.org/10.1007/s00209-019-02370-1 > DOI: 10.1007/s00209-019-02370-1.
    • APA

      Farnik, M., Jelonek, Z., & Ruas, M. A. S. (2020). Whitney theorem for complex polynomial mappings. Mathematische Zeitschrift, 295( 3-4), 1039-1065. doi:10.1007/s00209-019-02370-1
    • NLM

      Farnik M, Jelonek Z, Ruas MAS. Whitney theorem for complex polynomial mappings [Internet]. Mathematische Zeitschrift. 2020 ; 295( 3-4): 1039-1065.Available from: https://doi.org/10.1007/s00209-019-02370-1
    • Vancouver

      Farnik M, Jelonek Z, Ruas MAS. Whitney theorem for complex polynomial mappings [Internet]. Mathematische Zeitschrift. 2020 ; 295( 3-4): 1039-1065.Available from: https://doi.org/10.1007/s00209-019-02370-1
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CONEJEROS, Jonathan; TAL, Fábio Armando. Existence of non-contractible periodic orbits for homeomorphisms of the open annulus. Mathematische Zeitschrift, Heidelberg, Springer, n. 294, p. 1413–1439, 2020. Disponível em: < http://dx.doi.org/10.1007/s00209-019-02309-6 > DOI: 10.1007/s00209-019-02309-6.
    • APA

      Conejeros, J., & Tal, F. A. (2020). Existence of non-contractible periodic orbits for homeomorphisms of the open annulus. Mathematische Zeitschrift, ( 294), 1413–1439. doi:10.1007/s00209-019-02309-6
    • NLM

      Conejeros J, Tal FA. Existence of non-contractible periodic orbits for homeomorphisms of the open annulus [Internet]. Mathematische Zeitschrift. 2020 ;( 294): 1413–1439.Available from: http://dx.doi.org/10.1007/s00209-019-02309-6
    • Vancouver

      Conejeros J, Tal FA. Existence of non-contractible periodic orbits for homeomorphisms of the open annulus [Internet]. Mathematische Zeitschrift. 2020 ;( 294): 1413–1439.Available from: http://dx.doi.org/10.1007/s00209-019-02309-6
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; SCHWARZ, João Fernando. Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, Heidelberg, Springer, v. 295, p. 1323-1335, 2020. Disponível em: < https://doi.org/10.1007/s00209-019-02397-4 > DOI: 10.1007/s00209-019-02397-4.
    • APA

      Futorny, V., & Schwarz, J. F. (2020). Noncommutative Noether’s problem vs classic Noether’s problem. Mathematische Zeitschrift, 295, 1323-1335. doi:10.1007/s00209-019-02397-4
    • NLM

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.Available from: https://doi.org/10.1007/s00209-019-02397-4
    • Vancouver

      Futorny V, Schwarz JF. Noncommutative Noether’s problem vs classic Noether’s problem [Internet]. Mathematische Zeitschrift. 2020 ; 295 1323-1335.Available from: https://doi.org/10.1007/s00209-019-02397-4
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CATSIGERAS, Eleonora; TIAN, Xueting; VARGAS, Edson. Topological entropy on points without physical-like behaviour. Mathematische Zeitschrift, Heidelberg, Springer, v. 293, n. 3-4, p. 1043–1055, 2019. Disponível em: < https://doi.org/10.1007/s00209-018-2216-9 > DOI: 10.1007/s00209-018-2216-9.
    • APA

      Catsigeras, E., Tian, X., & Vargas, E. (2019). Topological entropy on points without physical-like behaviour. Mathematische Zeitschrift, 293( 3-4), 1043–1055. doi:10.1007/s00209-018-2216-9
    • NLM

      Catsigeras E, Tian X, Vargas E. Topological entropy on points without physical-like behaviour [Internet]. Mathematische Zeitschrift. 2019 ; 293( 3-4): 1043–1055.Available from: https://doi.org/10.1007/s00209-018-2216-9
    • Vancouver

      Catsigeras E, Tian X, Vargas E. Topological entropy on points without physical-like behaviour [Internet]. Mathematische Zeitschrift. 2019 ; 293( 3-4): 1043–1055.Available from: https://doi.org/10.1007/s00209-018-2216-9
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; KOCHLOUKOVA, Dessislava H; SIDKI, Said N. On self-similar Lie algebras and virtual endomorphisms. Mathematische Zeitschrift, Heidelberg, Springer, v. 292, n. 3-4, p. 1123–1156, 2019. Disponível em: < http://dx.doi.org/10.1007/s00209-018-2146-6 > DOI: 10.1007/s00209-018-2146-6.
    • APA

      Futorny, V., Kochloukova, D. H., & Sidki, S. N. (2019). On self-similar Lie algebras and virtual endomorphisms. Mathematische Zeitschrift, 292( 3-4), 1123–1156. doi:10.1007/s00209-018-2146-6
    • NLM

      Futorny V, Kochloukova DH, Sidki SN. On self-similar Lie algebras and virtual endomorphisms [Internet]. Mathematische Zeitschrift. 2019 ; 292( 3-4): 1123–1156.Available from: http://dx.doi.org/10.1007/s00209-018-2146-6
    • Vancouver

      Futorny V, Kochloukova DH, Sidki SN. On self-similar Lie algebras and virtual endomorphisms [Internet]. Mathematische Zeitschrift. 2019 ; 292( 3-4): 1123–1156.Available from: http://dx.doi.org/10.1007/s00209-018-2146-6
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TEORIA DA INTERSEÇÃO, SINGULARIDADES, TEORIA DA OBSTRUÇÃO, TEORIA DAS SINGULARIDADES, TEORIA DAS CATÁSTROFES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GAFFNEY, Terence; GRULHA JÚNIOR, Nivaldo de Góes; RUAS, Maria Aparecida Soares. The local Euler obstruction and topology of the stabilization of associated determinantal varieties. Mathematische Zeitschrift, Heidelberg, Springer, v. 291, n. 3-4, p. 905-930, 2019. Disponível em: < http://dx.doi.org/10.1007/s00209-018-2141-y > DOI: 10.1007/s00209-018-2141-y.
    • APA

      Gaffney, T., Grulha Júnior, N. de G., & Ruas, M. A. S. (2019). The local Euler obstruction and topology of the stabilization of associated determinantal varieties. Mathematische Zeitschrift, 291( 3-4), 905-930. doi:10.1007/s00209-018-2141-y
    • NLM

      Gaffney T, Grulha Júnior N de G, Ruas MAS. The local Euler obstruction and topology of the stabilization of associated determinantal varieties [Internet]. Mathematische Zeitschrift. 2019 ; 291( 3-4): 905-930.Available from: http://dx.doi.org/10.1007/s00209-018-2141-y
    • Vancouver

      Gaffney T, Grulha Júnior N de G, Ruas MAS. The local Euler obstruction and topology of the stabilization of associated determinantal varieties [Internet]. Mathematische Zeitschrift. 2019 ; 291( 3-4): 905-930.Available from: http://dx.doi.org/10.1007/s00209-018-2141-y
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco; PARMEGGIANI, Alberto; ZANI, Sérgio Luís; ZUGLIANI, Giuliano Angelo. Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, Heidelberg, Springer, v. No 2018, n. 16, p. 2367-2380, 2018. Disponível em: < http://dx.doi.org/10.1002/mana.201700300 > DOI: 10.1002/mana.201700300.
    • APA

      Bergamasco, A. P., Parmeggiani, A., Zani, S. L., & Zugliani, G. A. (2018). Geometrical proofs for the global solvability of systems. Mathematische Zeitschrift, No 2018( 16), 2367-2380. doi:10.1002/mana.201700300
    • NLM

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.Available from: http://dx.doi.org/10.1002/mana.201700300
    • Vancouver

      Bergamasco AP, Parmeggiani A, Zani SL, Zugliani GA. Geometrical proofs for the global solvability of systems [Internet]. Mathematische Zeitschrift. 2018 ; No 2018( 16): 2367-2380.Available from: http://dx.doi.org/10.1002/mana.201700300
  • Source: Mathematische Zeitschrift. Unidade: IME

    Subjects: GRUPOS DE LIE SEMISSIMPLES, ESPAÇOS SIMÉTRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio; GOZZI, Francisco J. Representations with Sp(1)k-reductions and quaternion-Kähler symmetric spaces. Mathematische Zeitschrift, Berlin, Springer, v. 290, n. 1–2, p. 561–575, 2018. Disponível em: < http://dx.doi.org/10.1007/s00209-017-2031-8 > DOI: 10.1007/s00209-017-2031-8.
    • APA

      Gorodski, C., & Gozzi, F. J. (2018). Representations with Sp(1)k-reductions and quaternion-Kähler symmetric spaces. Mathematische Zeitschrift, 290( 1–2), 561–575. doi:10.1007/s00209-017-2031-8
    • NLM

      Gorodski C, Gozzi FJ. Representations with Sp(1)k-reductions and quaternion-Kähler symmetric spaces [Internet]. Mathematische Zeitschrift. 2018 ; 290( 1–2): 561–575.Available from: http://dx.doi.org/10.1007/s00209-017-2031-8
    • Vancouver

      Gorodski C, Gozzi FJ. Representations with Sp(1)k-reductions and quaternion-Kähler symmetric spaces [Internet]. Mathematische Zeitschrift. 2018 ; 290( 1–2): 561–575.Available from: http://dx.doi.org/10.1007/s00209-017-2031-8
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: SINGULARIDADES, MATRIZES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KERNER, Dmitry; PEDERSEN, Helge Moller; RUAS, Maria Aparecida Soares. Lipschitz normal embeddings in the space of matrices. Mathematische Zeitschrift, Heidelberg, Springer, v. 290, n. 1-2, p. 485-507, 2018. Disponível em: < http://dx.doi.org/10.1007/s00209-017-2027-4 > DOI: 10.1007/s00209-017-2027-4.
    • APA

      Kerner, D., Pedersen, H. M., & Ruas, M. A. S. (2018). Lipschitz normal embeddings in the space of matrices. Mathematische Zeitschrift, 290( 1-2), 485-507. doi:10.1007/s00209-017-2027-4
    • NLM

      Kerner D, Pedersen HM, Ruas MAS. Lipschitz normal embeddings in the space of matrices [Internet]. Mathematische Zeitschrift. 2018 ; 290( 1-2): 485-507.Available from: http://dx.doi.org/10.1007/s00209-017-2027-4
    • Vancouver

      Kerner D, Pedersen HM, Ruas MAS. Lipschitz normal embeddings in the space of matrices [Internet]. Mathematische Zeitschrift. 2018 ; 290( 1-2): 485-507.Available from: http://dx.doi.org/10.1007/s00209-017-2027-4
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Subjects: TOPOLOGIA DIFERENCIAL, TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOT, Thierry; APAZA, Carlos Alberto Maquera. Nil-Anosov actions. Mathematische Zeitschrift, Heidelberg, Springer, v. 287, n. 3/4, p. 1279-1305, 2017. Disponível em: < http://dx.doi.org/10.1007/s00209-017-1868-1 > DOI: 10.1007/s00209-017-1868-1.
    • APA

      Barbot, T., & Apaza, C. A. M. (2017). Nil-Anosov actions. Mathematische Zeitschrift, 287( 3/4), 1279-1305. doi:10.1007/s00209-017-1868-1
    • NLM

      Barbot T, Apaza CAM. Nil-Anosov actions [Internet]. Mathematische Zeitschrift. 2017 ; 287( 3/4): 1279-1305.Available from: http://dx.doi.org/10.1007/s00209-017-1868-1
    • Vancouver

      Barbot T, Apaza CAM. Nil-Anosov actions [Internet]. Mathematische Zeitschrift. 2017 ; 287( 3/4): 1279-1305.Available from: http://dx.doi.org/10.1007/s00209-017-1868-1
  • Source: Mathematische Zeitschrift. Unidade: IME

    Subjects: PSEUDOGRUPOS, GRUPOIDES, GEOMETRIA DIFERENCIAL, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRAINIC, Marius; SALAZAR, Maria Amelia; STRUCHINER, Ivan. Multiplicative forms and Spencer operators. Mathematische Zeitschrift, Heidelberg, v. 279, n. 3-4, p. 939-979, 2015. Disponível em: < http://dx.doi.org/10.1007/s00209-014-1398-z > DOI: 10.1007/s00209-014-1398-z.
    • APA

      Crainic, M., Salazar, M. A., & Struchiner, I. (2015). Multiplicative forms and Spencer operators. Mathematische Zeitschrift, 279( 3-4), 939-979. doi:10.1007/s00209-014-1398-z
    • NLM

      Crainic M, Salazar MA, Struchiner I. Multiplicative forms and Spencer operators [Internet]. Mathematische Zeitschrift. 2015 ; 279( 3-4): 939-979.Available from: http://dx.doi.org/10.1007/s00209-014-1398-z
    • Vancouver

      Crainic M, Salazar MA, Struchiner I. Multiplicative forms and Spencer operators [Internet]. Mathematische Zeitschrift. 2015 ; 279( 3-4): 939-979.Available from: http://dx.doi.org/10.1007/s00209-014-1398-z
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUELMAN, Nancy; KOROPECKI, Andres; TAL, Fábio Armando. A characterization of annularity for area-preserving toral homeomorphisms. Mathematische Zeitschrift, Berlin, v. 276, n. 3-4, p. 673-689, 2014. Disponível em: < http://dx.doi.org/10.1007/s00209-013-1218-x > DOI: 10.1007/s00209-013-1218-x.
    • APA

      Guelman, N., Koropecki, A., & Tal, F. A. (2014). A characterization of annularity for area-preserving toral homeomorphisms. Mathematische Zeitschrift, 276( 3-4), 673-689. doi:10.1007/s00209-013-1218-x
    • NLM

      Guelman N, Koropecki A, Tal FA. A characterization of annularity for area-preserving toral homeomorphisms [Internet]. Mathematische Zeitschrift. 2014 ; 276( 3-4): 673-689.Available from: http://dx.doi.org/10.1007/s00209-013-1218-x
    • Vancouver

      Guelman N, Koropecki A, Tal FA. A characterization of annularity for area-preserving toral homeomorphisms [Internet]. Mathematische Zeitschrift. 2014 ; 276( 3-4): 673-689.Available from: http://dx.doi.org/10.1007/s00209-013-1218-x
  • Source: Mathematische Zeitschrift. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, GRUPOS QUÂNTICOS, ANÉIS COM DIVISÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; HARTWIG, Jonas T. Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN. Mathematische Zeitschrift, New York, v. 276, n. 1-2, p. 1-37, 2014. Disponível em: < http://dx.doi.org/10.1007/s00209-013-1184-3 > DOI: 10.1007/s00209-013-1184-3.
    • APA

      Futorny, V., & Hartwig, J. T. (2014). Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN. Mathematische Zeitschrift, 276( 1-2), 1-37. doi:10.1007/s00209-013-1184-3
    • NLM

      Futorny V, Hartwig JT. Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN [Internet]. Mathematische Zeitschrift. 2014 ; 276( 1-2): 1-37.Available from: http://dx.doi.org/10.1007/s00209-013-1184-3
    • Vancouver

      Futorny V, Hartwig JT. Solution of a q-difference Noether problem and the quantum Gelfand–Kirillov conjecture for glN [Internet]. Mathematische Zeitschrift. 2014 ; 276( 1-2): 1-37.Available from: http://dx.doi.org/10.1007/s00209-013-1184-3
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SINHA, R. Oset; RUAS, Maria Aparecida Soares; ATIQUE, Roberta Godoi Wik. Classifying codimension two multigerms. Mathematische Zeitschrift, New York, Springer, v. 278, n. 1-2, p. 547-573, 2014. Disponível em: < http://dx.doi.org/10.1007/s00209-014-1326-2 > DOI: 10.1007/s00209-014-1326-2.
    • APA

      Sinha, R. O., Ruas, M. A. S., & Atique, R. G. W. (2014). Classifying codimension two multigerms. Mathematische Zeitschrift, 278( 1-2), 547-573. doi:10.1007/s00209-014-1326-2
    • NLM

      Sinha RO, Ruas MAS, Atique RGW. Classifying codimension two multigerms [Internet]. Mathematische Zeitschrift. 2014 ; 278( 1-2): 547-573.Available from: http://dx.doi.org/10.1007/s00209-014-1326-2
    • Vancouver

      Sinha RO, Ruas MAS, Atique RGW. Classifying codimension two multigerms [Internet]. Mathematische Zeitschrift. 2014 ; 278( 1-2): 547-573.Available from: http://dx.doi.org/10.1007/s00209-014-1326-2
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAROSTICHI, Rafael F; CORDARO, Paulo Domingos; PETRONILHO, Gerson. On the Borel property for solutions to systems of complex vector fields. Mathematische Zeitschrift, Weinheim, Wiley, v. 286, n. 14-15, p. 1439-1451, 2013. Disponível em: < http://dx.doi.org/10.1002/mana.201200231 > DOI: 10.1002/mana.201200231.
    • APA

      Barostichi, R. F., Cordaro, P. D., & Petronilho, G. (2013). On the Borel property for solutions to systems of complex vector fields. Mathematische Zeitschrift, 286( 14-15), 1439-1451. doi:10.1002/mana.201200231
    • NLM

      Barostichi RF, Cordaro PD, Petronilho G. On the Borel property for solutions to systems of complex vector fields [Internet]. Mathematische Zeitschrift. 2013 ; 286( 14-15): 1439-1451.Available from: http://dx.doi.org/10.1002/mana.201200231
    • Vancouver

      Barostichi RF, Cordaro PD, Petronilho G. On the Borel property for solutions to systems of complex vector fields [Internet]. Mathematische Zeitschrift. 2013 ; 286( 14-15): 1439-1451.Available from: http://dx.doi.org/10.1002/mana.201200231
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GRUPOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; GUASCHI, John. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2. Mathematische Zeitschrift[S.l.], Springer, v. 274, p. 667-683, 2013. Disponível em: < http://dx.doi.org/10.1007/s00209-012-1090-0 > DOI: 10.1007/s00209-012-1090-0.
    • APA

      Gonçalves, D. L., & Guaschi, J. (2013). Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2. Mathematische Zeitschrift, 274, 667-683. doi:10.1007/s00209-012-1090-0
    • NLM

      Gonçalves DL, Guaschi J. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2 [Internet]. Mathematische Zeitschrift. 2013 ; 274 667-683.Available from: http://dx.doi.org/10.1007/s00209-012-1090-0
    • Vancouver

      Gonçalves DL, Guaschi J. Minimal generating and normally generating sets for the braid and mapping class groups of D2 , S2 and RP2 [Internet]. Mathematische Zeitschrift. 2013 ; 274 667-683.Available from: http://dx.doi.org/10.1007/s00209-012-1090-0
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GEODÉSIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FLORES, Jose Luis; JAVALOYES, Miguel Angel; PICCIONE, Paolo. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, NewvYork, v. 267, n. 1-2, p. 221-233, 2011. Disponível em: < http://dx.doi.org/10.1007/s00209-009-0617-5 > DOI: 10.1007/s00209-009-0617-5.
    • APA

      Flores, J. L., Javaloyes, M. A., & Piccione, P. (2011). Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field. Mathematische Zeitschrift, 267( 1-2), 221-233. doi:10.1007/s00209-009-0617-5
    • NLM

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.Available from: http://dx.doi.org/10.1007/s00209-009-0617-5
    • Vancouver

      Flores JL, Javaloyes MA, Piccione P. Periodic geodesics and geometry of compact Lorentzian manifolds with a Killing vector field [Internet]. Mathematische Zeitschrift. 2011 ; 267( 1-2): 221-233.Available from: http://dx.doi.org/10.1007/s00209-009-0617-5
  • Source: Mathematische Zeitschrift. Unidade: ICMC

    Assunto: SINGULARIDADES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RUAS, Maria Aparecida Soares; VALETTE, Guillaume. 'C POT. 0' and bi-Lipschitz K-equivalence of mappings. Mathematische Zeitschrift, Netherlands, Springer, v. 269, n. 1-2, p. 293-308, 2011. Disponível em: < http://dx.doi.org/10.1007/s00209-010-0728-z > DOI: 10.1007/s00209-010-0728-z.
    • APA

      Ruas, M. A. S., & Valette, G. (2011). 'C POT. 0' and bi-Lipschitz K-equivalence of mappings. Mathematische Zeitschrift, 269( 1-2), 293-308. doi:10.1007/s00209-010-0728-z
    • NLM

      Ruas MAS, Valette G. 'C POT. 0' and bi-Lipschitz K-equivalence of mappings [Internet]. Mathematische Zeitschrift. 2011 ; 269( 1-2): 293-308.Available from: http://dx.doi.org/10.1007/s00209-010-0728-z
    • Vancouver

      Ruas MAS, Valette G. 'C POT. 0' and bi-Lipschitz K-equivalence of mappings [Internet]. Mathematische Zeitschrift. 2011 ; 269( 1-2): 293-308.Available from: http://dx.doi.org/10.1007/s00209-010-0728-z
  • Source: Mathematische Zeitschrift. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ASPERTI, Antonio Carlos; SOUSA JUNIOR, Luiz Amancio M; CHAVES, Rosa Maria dos Santos Barreiro. The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms. Mathematische Zeitschrift, New York, v. 267, n. 3-4, p. 523-533, 2011. Disponível em: < http://dx.doi.org/10.1007/s00209-009-0633-5 > DOI: 10.1007/s00209-009-0633-5.
    • APA

      Asperti, A. C., Sousa Junior, L. A. M., & Chaves, R. M. dos S. B. (2011). The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms. Mathematische Zeitschrift, 267( 3-4), 523-533. doi:10.1007/s00209-009-0633-5
    • NLM

      Asperti AC, Sousa Junior LAM, Chaves RM dos SB. The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms [Internet]. Mathematische Zeitschrift. 2011 ; 267( 3-4): 523-533.Available from: http://dx.doi.org/10.1007/s00209-009-0633-5
    • Vancouver

      Asperti AC, Sousa Junior LAM, Chaves RM dos SB. The Gauss-Kronecker curvature of minimal hypersurfaces in four-dimensional space forms [Internet]. Mathematische Zeitschrift. 2011 ; 267( 3-4): 523-533.Available from: http://dx.doi.org/10.1007/s00209-009-0633-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020