Filtros : "Journal of Statistical Physics" Limpar

Filtros



Refine with date range


  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NASCIMENTO, Antonio Marcos Batista do; FONTES, Luiz Renato. Convergence time to equilibrium of the metropolis dynamics for the GREM. Journal of Statistical Physics, New York, Springer, v. 178, n. 1, p. 297-317, 2020. Disponível em: < https://doi.org/10.1007/s10955-019-02433-x > DOI: 10.1007/s10955-019-02433-x.
    • APA

      Nascimento, A. M. B. do, & Fontes, L. R. (2020). Convergence time to equilibrium of the metropolis dynamics for the GREM. Journal of Statistical Physics, 178( 1), 297-317. doi:10.1007/s10955-019-02433-x
    • NLM

      Nascimento AMB do, Fontes LR. Convergence time to equilibrium of the metropolis dynamics for the GREM [Internet]. Journal of Statistical Physics. 2020 ; 178( 1): 297-317.Available from: https://doi.org/10.1007/s10955-019-02433-x
    • Vancouver

      Nascimento AMB do, Fontes LR. Convergence time to equilibrium of the metropolis dynamics for the GREM [Internet]. Journal of Statistical Physics. 2020 ; 178( 1): 297-317.Available from: https://doi.org/10.1007/s10955-019-02433-x
  • Source: Journal of Statistical Physics. Unidade: INTER: ICMC -UFSCAR

    Subjects: PROCESSOS EM MEIOS ALEATÓRIOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JUNIOR, Valdivino V; RODRÍGUEZ, Pablo Martín; SPEROTO, Adalto. The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics, New York, Springer, 2020. Disponível em: < https://doi.org/10.1007/s10955-020-02623-y > DOI: 10.1007/s10955-020-02623-y.
    • APA

      Junior, V. V., Rodríguez, P. M., & Speroto, A. (2020). The Maki-Thompson rumor model on infinite Cayley trees. Journal of Statistical Physics. doi:10.1007/s10955-020-02623-y
    • NLM

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ;Available from: https://doi.org/10.1007/s10955-020-02623-y
    • Vancouver

      Junior VV, Rodríguez PM, Speroto A. The Maki-Thompson rumor model on infinite Cayley trees [Internet]. Journal of Statistical Physics. 2020 ;Available from: https://doi.org/10.1007/s10955-020-02623-y
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto; ROLLA, Leonardo T. Slow-to-start traffic model: traffic saturation and scaling limits. Journal of Statistical Physics, New York, Springer, 2020. Disponível em: < http://dx.doi.org/10.1007/s10955-020-02555-7 > DOI: 10.1007/s10955-020-02555-7.
    • APA

      Ferrari, P. A., & Rolla, L. T. (2020). Slow-to-start traffic model: traffic saturation and scaling limits. Journal of Statistical Physics. doi:10.1007/s10955-020-02555-7
    • NLM

      Ferrari PA, Rolla LT. Slow-to-start traffic model: traffic saturation and scaling limits [Internet]. Journal of Statistical Physics. 2020 ;Available from: http://dx.doi.org/10.1007/s10955-020-02555-7
    • Vancouver

      Ferrari PA, Rolla LT. Slow-to-start traffic model: traffic saturation and scaling limits [Internet]. Journal of Statistical Physics. 2020 ;Available from: http://dx.doi.org/10.1007/s10955-020-02555-7
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: NEURÔNIOS, SINAPSE, ESTATÍSTICA APLICADA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio; LÖCHERBACH, Eva; PRESUTTI, Errico; POUZAT, Cristophe. A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, Dordrecht, Springer, v. 178, n. 4, p. 869-892, 2020. Disponível em: < http://dx.doi.org/10.1007/s10955-019-02467-1 > DOI: 10.1007/s10955-019-02467-1.
    • APA

      Galves, A., Löcherbach, E., Presutti, E., & Pouzat, C. (2020). A system of interacting neurons with short term synaptic facilitation. Journal of Statistical Physics, 178( 4), 869-892. doi:10.1007/s10955-019-02467-1
    • NLM

      Galves A, Löcherbach E, Presutti E, Pouzat C. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.Available from: http://dx.doi.org/10.1007/s10955-019-02467-1
    • Vancouver

      Galves A, Löcherbach E, Presutti E, Pouzat C. A system of interacting neurons with short term synaptic facilitation [Internet]. Journal of Statistical Physics. 2020 ; 178( 4): 869-892.Available from: http://dx.doi.org/10.1007/s10955-019-02467-1
  • Source: Journal of Statistical Physics. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, MECÂNICA ESTATÍSTICA, PROBABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KROSCHINSKY, Wilhelm; MARCHETTI, Domingos Humberto Urbano. On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse. Journal of Statistical Physics, New York, Springer US, v. 177, n. 2, p. 324–364, 2019. Disponível em: < https://doi.org/10.1007/s10955-019-02370-9 > DOI: 10.1007/s10955-019-02370-9.
    • APA

      Kroschinsky, W., & Marchetti, D. H. U. (2019). On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse. Journal of Statistical Physics, 177( 2), 324–364. doi:10.1007/s10955-019-02370-9
    • NLM

      Kroschinsky W, Marchetti DHU. On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse [Internet]. Journal of Statistical Physics. 2019 ; 177( 2): 324–364.Available from: https://doi.org/10.1007/s10955-019-02370-9
    • Vancouver

      Kroschinsky W, Marchetti DHU. On the Mayer Series of Two-Dimensional Yukawa Gas at Inverse Temperature in the Interval of Collapse [Internet]. Journal of Statistical Physics. 2019 ; 177( 2): 324–364.Available from: https://doi.org/10.1007/s10955-019-02370-9
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PROCESSOS ALEATÓRIOS, BIOMATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRARI, Pablo Augusto; GALVES, Antonio; GRIGORESCU, Ilie; LÖCHERBACH, E. Phase transition for infinite systems of spiking neurons. Journal of Statistical Physics, New York, Springer, v. 172, n. 6, p. 1564–1575, 2018. Disponível em: < http://dx.doi.org/10.1007/s10955-018-2118-6 > DOI: 10.1007/s10955-018-2118-6.
    • APA

      Ferrari, P. A., Galves, A., Grigorescu, I., & Löcherbach, E. (2018). Phase transition for infinite systems of spiking neurons. Journal of Statistical Physics, 172( 6), 1564–1575. doi:10.1007/s10955-018-2118-6
    • NLM

      Ferrari PA, Galves A, Grigorescu I, Löcherbach E. Phase transition for infinite systems of spiking neurons [Internet]. Journal of Statistical Physics. 2018 ; 172( 6): 1564–1575.Available from: http://dx.doi.org/10.1007/s10955-018-2118-6
    • Vancouver

      Ferrari PA, Galves A, Grigorescu I, Löcherbach E. Phase transition for infinite systems of spiking neurons [Internet]. Journal of Statistical Physics. 2018 ; 172( 6): 1564–1575.Available from: http://dx.doi.org/10.1007/s10955-018-2118-6
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS DE MARKOV, PROCESSOS ESTOCÁSTICOS, ANÁLISE DE SOBREVIVÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACHADO, Fábio Prates; ROLDÁN CORREA, Alejandro; VARGAS JÚNIOR, Valdivino. Colonization and collapse on homogeneous trees. Journal of Statistical Physics, New York, Springer, v. 173, n. 5, p. 1386–1407, 2018. Disponível em: < https://doi.org/10.1007/s10955-018-2161-3 > DOI: 10.1007/s10955-018-2161-3.
    • APA

      Machado, F. P., Roldán Correa, A., & Vargas Júnior, V. (2018). Colonization and collapse on homogeneous trees. Journal of Statistical Physics, 173( 5), 1386–1407. doi:10.1007/s10955-018-2161-3
    • NLM

      Machado FP, Roldán Correa A, Vargas Júnior V. Colonization and collapse on homogeneous trees [Internet]. Journal of Statistical Physics. 2018 ; 173( 5): 1386–1407.Available from: https://doi.org/10.1007/s10955-018-2161-3
    • Vancouver

      Machado FP, Roldán Correa A, Vargas Júnior V. Colonization and collapse on homogeneous trees [Internet]. Journal of Statistical Physics. 2018 ; 173( 5): 1386–1407.Available from: https://doi.org/10.1007/s10955-018-2161-3
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: PROBABILIDADE, INFERÊNCIA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KANG, Mihyun; PACHON, Angelica; RODRIGUEZ, Pablo Martin. Evolution of a modified binomial random graph by agglomeration. Journal of Statistical Physics, New York, Springer, v. Fe 2018, n. 3, p. 509-535, 2018. Disponível em: < http://dx.doi.org/10.1007/s10955-017-1940-6 > DOI: 10.1007/s10955-017-1940-6.
    • APA

      Kang, M., Pachon, A., & Rodriguez, P. M. (2018). Evolution of a modified binomial random graph by agglomeration. Journal of Statistical Physics, Fe 2018( 3), 509-535. doi:10.1007/s10955-017-1940-6
    • NLM

      Kang M, Pachon A, Rodriguez PM. Evolution of a modified binomial random graph by agglomeration [Internet]. Journal of Statistical Physics. 2018 ; Fe 2018( 3): 509-535.Available from: http://dx.doi.org/10.1007/s10955-017-1940-6
    • Vancouver

      Kang M, Pachon A, Rodriguez PM. Evolution of a modified binomial random graph by agglomeration [Internet]. Journal of Statistical Physics. 2018 ; Fe 2018( 3): 509-535.Available from: http://dx.doi.org/10.1007/s10955-017-1940-6
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: PROBABILIDADE, INFERÊNCIA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AGLIARI, Elena; PACHON, Angelica; RODRIGUEZ, Pablo Martin; TAVANI, Flavia. Phase transition for the Maki–Thompson rumour model on a small-world network. Journal of Statistical Physics, New York, Springer, v. No 2017, n. 4, p. 846-875, 2017. Disponível em: < http://dx.doi.org/10.1007/s10955-017-1892-x > DOI: 10.1007/s10955-017-1892-x.
    • APA

      Agliari, E., Pachon, A., Rodriguez, P. M., & Tavani, F. (2017). Phase transition for the Maki–Thompson rumour model on a small-world network. Journal of Statistical Physics, No 2017( 4), 846-875. doi:10.1007/s10955-017-1892-x
    • NLM

      Agliari E, Pachon A, Rodriguez PM, Tavani F. Phase transition for the Maki–Thompson rumour model on a small-world network [Internet]. Journal of Statistical Physics. 2017 ; No 2017( 4): 846-875.Available from: http://dx.doi.org/10.1007/s10955-017-1892-x
    • Vancouver

      Agliari E, Pachon A, Rodriguez PM, Tavani F. Phase transition for the Maki–Thompson rumour model on a small-world network [Internet]. Journal of Statistical Physics. 2017 ; No 2017( 4): 846-875.Available from: http://dx.doi.org/10.1007/s10955-017-1892-x
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASSANDRO, Marzio; GALVES, Antonio; LÖCHERBACH, E. Information transmission and criticality in the contact process. Journal of Statistical Physics, New York, Springer, v. 168, n. 6, p. 1180-1190, 2017. Disponível em: < http://dx.doi.org/10.1007/s10955-017-1854-3 > DOI: 10.1007/s10955-017-1854-3.
    • APA

      Cassandro, M., Galves, A., & Löcherbach, E. (2017). Information transmission and criticality in the contact process. Journal of Statistical Physics, 168( 6), 1180-1190. doi:10.1007/s10955-017-1854-3
    • NLM

      Cassandro M, Galves A, Löcherbach E. Information transmission and criticality in the contact process [Internet]. Journal of Statistical Physics. 2017 ; 168( 6): 1180-1190.Available from: http://dx.doi.org/10.1007/s10955-017-1854-3
    • Vancouver

      Cassandro M, Galves A, Löcherbach E. Information transmission and criticality in the contact process [Internet]. Journal of Statistical Physics. 2017 ; 168( 6): 1180-1190.Available from: http://dx.doi.org/10.1007/s10955-017-1854-3
  • Source: Journal of Statistical Physics. Unidade: ICMC

    Subjects: TEORIA ERGÓDICA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MEHDIPOUR, P; TAHZIBI, Ali. SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, New York, Springer, v. 163, n. 1, p. 139-155, 2016. Disponível em: < http://dx.doi.org/10.1007/s10955-016-1458-3 > DOI: 10.1007/s10955-016-1458-3.
    • APA

      Mehdipour, P., & Tahzibi, A. (2016). SRB measures and homoclinic relation for endomorphisms. Journal of Statistical Physics, 163( 1), 139-155. doi:10.1007/s10955-016-1458-3
    • NLM

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.Available from: http://dx.doi.org/10.1007/s10955-016-1458-3
    • Vancouver

      Mehdipour P, Tahzibi A. SRB measures and homoclinic relation for endomorphisms [Internet]. Journal of Statistical Physics. 2016 ; 163( 1): 139-155.Available from: http://dx.doi.org/10.1007/s10955-016-1458-3
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS DE RAMIFICAÇÃO, DINÂMICA DE POPULAÇÕES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VARGAS JUNIOR, Valdivino; MACHADO, Fábio Prates; ROLDÁN CORREA, Alejandro. Dispersion as a survival strategy. Journal of Statistical Physics, New York, 2016. Disponível em: < http://dx.doi.org/10.1007/s10955-016-1571-3 > DOI: 10.1007/s10955-016-1571-3.
    • APA

      Vargas Junior, V., Machado, F. P., & Roldán Correa, A. (2016). Dispersion as a survival strategy. Journal of Statistical Physics. doi:10.1007/s10955-016-1571-3
    • NLM

      Vargas Junior V, Machado FP, Roldán Correa A. Dispersion as a survival strategy [Internet]. Journal of Statistical Physics. 2016 ;Available from: http://dx.doi.org/10.1007/s10955-016-1571-3
    • Vancouver

      Vargas Junior V, Machado FP, Roldán Correa A. Dispersion as a survival strategy [Internet]. Journal of Statistical Physics. 2016 ;Available from: http://dx.doi.org/10.1007/s10955-016-1571-3
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MODELO DE ISING, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONZÁLEZ NAVARRETE, Manuel Alejandro; PECHERSKY, Eugene A; YAMBARTSEV, Anatoli. Phase transition in ferromagnetic Ising model with a cell-board external field. Journal of Statistical Physics, New York, Springer, v. 162, n. Ja 2016, p. 139-161, 2016. Disponível em: < http://dx.doi.org/10.1007/s10955-015-1392-9 > DOI: 10.1007/s10955-015-1392-9.
    • APA

      González Navarrete, M. A., Pechersky, E. A., & Yambartsev, A. (2016). Phase transition in ferromagnetic Ising model with a cell-board external field. Journal of Statistical Physics, 162( Ja 2016), 139-161. doi:10.1007/s10955-015-1392-9
    • NLM

      González Navarrete MA, Pechersky EA, Yambartsev A. Phase transition in ferromagnetic Ising model with a cell-board external field [Internet]. Journal of Statistical Physics. 2016 ; 162( Ja 2016): 139-161.Available from: http://dx.doi.org/10.1007/s10955-015-1392-9
    • Vancouver

      González Navarrete MA, Pechersky EA, Yambartsev A. Phase transition in ferromagnetic Ising model with a cell-board external field [Internet]. Journal of Statistical Physics. 2016 ; 162( Ja 2016): 139-161.Available from: http://dx.doi.org/10.1007/s10955-015-1392-9
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PASSEIOS ALEATÓRIOS, PROCESSOS ESTOCÁSTICOS, MECÂNICA ESTATÍSTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEBENSZTAYN, Élcio; MACHADO, Fábio Prates; MARTINEZ, Mauricio Zuluaga. Random walks systems with finite lifetime on Z. Journal of Statistical Physics, New York, v. 162, n. 3, p. 727-738, 2016. Disponível em: < http://dx.doi.org/10.1007/s10955-015-1418-3 > DOI: 10.1007/s10955-015-1418-3.
    • APA

      Lebensztayn, É., Machado, F. P., & Martinez, M. Z. (2016). Random walks systems with finite lifetime on Z. Journal of Statistical Physics, 162( 3), 727-738. doi:10.1007/s10955-015-1418-3
    • NLM

      Lebensztayn É, Machado FP, Martinez MZ. Random walks systems with finite lifetime on Z [Internet]. Journal of Statistical Physics. 2016 ; 162( 3): 727-738.Available from: http://dx.doi.org/10.1007/s10955-015-1418-3
    • Vancouver

      Lebensztayn É, Machado FP, Martinez MZ. Random walks systems with finite lifetime on Z [Internet]. Journal of Statistical Physics. 2016 ; 162( 3): 727-738.Available from: http://dx.doi.org/10.1007/s10955-015-1418-3
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROBABILIDADE, PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTOCÁSTICOS ESPECIAIS, PROCESSOS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DE MASI, Anna; GALVES, Antonio; LÖCHERBACH, E.; PRESUTTI, Errico. Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, New York, v. 158, n. 4, p. 866-902, 2015. Disponível em: < http://dx.doi.org/10.1007/s10955-014-1145-1 > DOI: 10.1007/s10955-014-1145-1.
    • APA

      De Masi, A., Galves, A., Löcherbach, E., & Presutti, E. (2015). Hydrodynamic limit for interacting neurons. Journal of Statistical Physics, 158( 4), 866-902. doi:10.1007/s10955-014-1145-1
    • NLM

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.Available from: http://dx.doi.org/10.1007/s10955-014-1145-1
    • Vancouver

      De Masi A, Galves A, Löcherbach E, Presutti E. Hydrodynamic limit for interacting neurons [Internet]. Journal of Statistical Physics. 2015 ; 158( 4): 866-902.Available from: http://dx.doi.org/10.1007/s10955-014-1145-1
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir; SCHÜTZ, Gunter M. Quantum algebra symmetry of the ASEP with second-class particles. Journal of Statistical Physics, New York, v. No 2015, n. 4, p. 821-842, 2015. Disponível em: < http://dx.doi.org/10.1007/s10955-015-1363-1 > DOI: 10.1007/s10955-015-1363-1.
    • APA

      Belitsky, V., & Schütz, G. M. (2015). Quantum algebra symmetry of the ASEP with second-class particles. Journal of Statistical Physics, No 2015( 4), 821-842. doi:10.1007/s10955-015-1363-1
    • NLM

      Belitsky V, Schütz GM. Quantum algebra symmetry of the ASEP with second-class particles [Internet]. Journal of Statistical Physics. 2015 ; No 2015( 4): 821-842.Available from: http://dx.doi.org/10.1007/s10955-015-1363-1
    • Vancouver

      Belitsky V, Schütz GM. Quantum algebra symmetry of the ASEP with second-class particles [Internet]. Journal of Statistical Physics. 2015 ; No 2015( 4): 821-842.Available from: http://dx.doi.org/10.1007/s10955-015-1363-1
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PROCESSOS ESTACIONÁRIOS, MECÂNICA ESTATÍSTICA, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio; CARDEÑO ACERO, Liliam; GALLO, Sandro. Potential well spectrum and hitting time in renewal processes. Journal of Statistical Physics, New York, v. 159, n. 5, p. 1087-1106, 2015. Disponível em: < http://dx.doi.org/10.1007/s10955-015-1216-y > DOI: 10.1007/s10955-015-1216-y.
    • APA

      Abadi, M. N., Cardeño Acero, L., & Gallo, S. (2015). Potential well spectrum and hitting time in renewal processes. Journal of Statistical Physics, 159( 5), 1087-1106. doi:10.1007/s10955-015-1216-y
    • NLM

      Abadi MN, Cardeño Acero L, Gallo S. Potential well spectrum and hitting time in renewal processes [Internet]. Journal of Statistical Physics. 2015 ; 159( 5): 1087-1106.Available from: http://dx.doi.org/10.1007/s10955-015-1216-y
    • Vancouver

      Abadi MN, Cardeño Acero L, Gallo S. Potential well spectrum and hitting time in renewal processes [Internet]. Journal of Statistical Physics. 2015 ; 159( 5): 1087-1106.Available from: http://dx.doi.org/10.1007/s10955-015-1216-y
  • Source: Journal of Statistical Physics. Unidade: EACH

    Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FREIRE, Marcelo Ventura. Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, New York, v. 160, n. 2, p. 357-370, 2015. Disponível em: < http://dx.doi.org/10.1007/s10955-015-1266-1 > DOI: 10.1007/s10955-015-1266-1.
    • APA

      Freire, M. V. (2015). Application of moderate deviation techniques to Prove Sinai theorem on RWRE. Journal of Statistical Physics, 160( 2), 357-370. doi:10.1007/s10955-015-1266-1
    • NLM

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.Available from: http://dx.doi.org/10.1007/s10955-015-1266-1
    • Vancouver

      Freire MV. Application of moderate deviation techniques to Prove Sinai theorem on RWRE [Internet]. Journal of Statistical Physics. 2015 ; 160( 2): 357-370.Available from: http://dx.doi.org/10.1007/s10955-015-1266-1
  • Source: Journal of Statistical Physics. Unidades: IME, IF

    Subjects: PROCESSOS ESTOCÁSTICOS ESPECIAIS, MECÂNICA ESTATÍSTICA, MODELO DE ISING

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONTES, Luiz Renato; MARCHETTI, Domingos H. U.; MEROLA, Immacolata; PRESUTTI, Errico; VARES, Maria Eulalia. Layered systems at the mean field critical temperature. Journal of Statistical Physics, New York, v. 161, n. 1, p. 91-122, 2015. Disponível em: < http://dx.doi.org/10.1007/s10955-015-1307-9 > DOI: 10.1007/s10955-015-1307-9.
    • APA

      Fontes, L. R., Marchetti, D. H. U., Merola, I., Presutti, E., & Vares, M. E. (2015). Layered systems at the mean field critical temperature. Journal of Statistical Physics, 161( 1), 91-122. doi:10.1007/s10955-015-1307-9
    • NLM

      Fontes LR, Marchetti DHU, Merola I, Presutti E, Vares ME. Layered systems at the mean field critical temperature [Internet]. Journal of Statistical Physics. 2015 ; 161( 1): 91-122.Available from: http://dx.doi.org/10.1007/s10955-015-1307-9
    • Vancouver

      Fontes LR, Marchetti DHU, Merola I, Presutti E, Vares ME. Layered systems at the mean field critical temperature [Internet]. Journal of Statistical Physics. 2015 ; 161( 1): 91-122.Available from: http://dx.doi.org/10.1007/s10955-015-1307-9
  • Source: Journal of Statistical Physics. Unidade: IME

    Subjects: ESTATÍSTICA, MECÂNICA ESTATÍSTICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARMENDÁRIZ, Inés; FERRARI, Pablo Augusto; GROISMAN, Pablo; LEONARDI, Florencia Graciela. Finite cycle Gibbs measures on permutations of Zd. Journal of Statistical Physics, New York, v. 158, n. 6, p. 1213-1233, 2015. Disponível em: < http://dx.doi.org/10.1007/s10955-014-1169-6 > DOI: 10.1007/s10955-014-1169-6.
    • APA

      Armendáriz, I., Ferrari, P. A., Groisman, P., & Leonardi, F. G. (2015). Finite cycle Gibbs measures on permutations of Zd. Journal of Statistical Physics, 158( 6), 1213-1233. doi:10.1007/s10955-014-1169-6
    • NLM

      Armendáriz I, Ferrari PA, Groisman P, Leonardi FG. Finite cycle Gibbs measures on permutations of Zd [Internet]. Journal of Statistical Physics. 2015 ; 158( 6): 1213-1233.Available from: http://dx.doi.org/10.1007/s10955-014-1169-6
    • Vancouver

      Armendáriz I, Ferrari PA, Groisman P, Leonardi FG. Finite cycle Gibbs measures on permutations of Zd [Internet]. Journal of Statistical Physics. 2015 ; 158( 6): 1213-1233.Available from: http://dx.doi.org/10.1007/s10955-014-1169-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020