Filters : "Journal of Mathematical Physics" Limpar

Filters



Refine with date range


  • Source: Journal of Mathematical Physics. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, MECÂNICA QUÂNTICA, ANÁLISE FUNCIONAL, MECÂNICA ESTATÍSTICA QUÂNTICA, ÁLGEBRAS DE OPERADORES

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRU, Jean-Bernard e PEDRA, Walter de Siqueira. Classical dynamics from self-consistency equations in quantum mechanics. Journal of Mathematical Physics, v. 63, n. 5, 2022Tradução . . Disponível em: https://doi.org/10.1063/5.0039339. Acesso em: 10 ago. 2022.
    • APA

      Bru, J. -B., & Pedra, W. de S. (2022). Classical dynamics from self-consistency equations in quantum mechanics. Journal of Mathematical Physics, 63( 5). doi:10.1063/5.0039339
    • NLM

      Bru J-B, Pedra W de S. Classical dynamics from self-consistency equations in quantum mechanics [Internet]. Journal of Mathematical Physics. 2022 ; 63( 5):[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/5.0039339
    • Vancouver

      Bru J-B, Pedra W de S. Classical dynamics from self-consistency equations in quantum mechanics [Internet]. Journal of Mathematical Physics. 2022 ; 63( 5):[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/5.0039339
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, MATERIAIS MAGNÉTICOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNÁNDEZ, Roberto et al. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, v. 62, n. artigo 103301, p. 1-13, 2021Tradução . . Disponível em: https://doi.org/10.1063/5.0020757. Acesso em: 10 ago. 2022.
    • APA

      Fernández, R., González-Navarrete, M., Pechersky, E., & Yambartsev, A. (2021). Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria. Journal of Mathematical Physics, 62( artigo 103301), 1-13. doi:10.1063/5.0020757
    • NLM

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/5.0020757
    • Vancouver

      Fernández R, González-Navarrete M, Pechersky E, Yambartsev A. Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria [Internet]. Journal of Mathematical Physics. 2021 ; 62( artigo 103301): 1-13.[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/5.0020757
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subject: MECÂNICA QUÂNTICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e HERNÁNDEZ MELO, César A e PLAZA, Ramón G. Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity. Journal of Mathematical Physics, v. 60, n. 7, 2019Tradução . . Disponível em: https://doi.org/10.1063/1.5097417. Acesso em: 10 ago. 2022.
    • APA

      Pava, J. A., Hernández Melo, C. A., & Plaza, R. G. (2019). Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity. Journal of Mathematical Physics, 60( 7). doi:10.1063/1.5097417
    • NLM

      Pava JA, Hernández Melo CA, Plaza RG. Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity [Internet]. Journal of Mathematical Physics. 2019 ; 60( 7):[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/1.5097417
    • Vancouver

      Pava JA, Hernández Melo CA, Plaza RG. Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity [Internet]. Journal of Mathematical Physics. 2019 ; 60( 7):[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/1.5097417
  • Source: Journal of Mathematical Physics. Unidade: IFSC

    Subjects: ÁLGEBRA, DIELÉTRICOS, MÉTODO DE MONTE CARLO, MATERIAIS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BASEILHAC, Pascal e CRAMPÉ, Nicolas e PIMENTA, Rodrigo Alves. Higher rank classical analogs of the Askey-Wilson algebra from the slN Onsager algebra. Journal of Mathematical Physics, v. 60, n. 8, p. 081703-1-081703-13, 2019Tradução . . Disponível em: http://dx.doi.org/10.1063/1.5111292. Acesso em: 10 ago. 2022.
    • APA

      Baseilhac, P., Crampé, N., & Pimenta, R. A. (2019). Higher rank classical analogs of the Askey-Wilson algebra from the slN Onsager algebra. Journal of Mathematical Physics, 60( 8), 081703-1-081703-13. doi:10.1063/1.5111292
    • NLM

      Baseilhac P, Crampé N, Pimenta RA. Higher rank classical analogs of the Askey-Wilson algebra from the slN Onsager algebra [Internet]. Journal of Mathematical Physics. 2019 ; 60( 8): 081703-1-081703-13.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.5111292
    • Vancouver

      Baseilhac P, Crampé N, Pimenta RA. Higher rank classical analogs of the Askey-Wilson algebra from the slN Onsager algebra [Internet]. Journal of Mathematical Physics. 2019 ; 60( 8): 081703-1-081703-13.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.5111292
  • Source: Journal of Mathematical Physics. Unidade: IF

    Subjects: MECÂNICA ESTATÍSTICA, TEORIA QUÂNTICA DE CAMPO, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA), ÁLGEBRAS DE VON NEUMANN

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA DA SILVA, R. Perturbations of KMS states and noncommutative Lp -spaces. Journal of Mathematical Physics, v. 60, 2019Tradução . . Disponível em: https://doi.org/10.1063/1.5099066. Acesso em: 10 ago. 2022.
    • APA

      Correa da Silva, R. (2019). Perturbations of KMS states and noncommutative Lp -spaces. Journal of Mathematical Physics, 60. doi:10.1063/1.5099066
    • NLM

      Correa da Silva R. Perturbations of KMS states and noncommutative Lp -spaces [Internet]. Journal of Mathematical Physics. 2019 ; 60[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/1.5099066
    • Vancouver

      Correa da Silva R. Perturbations of KMS states and noncommutative Lp -spaces [Internet]. Journal of Mathematical Physics. 2019 ; 60[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/1.5099066
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITURRIAGA, Leonelo e MASSA, Eugenio Tommaso. On necessary conditions for the comparison principle and the sub- and supersolution method for the stationary Kirchhoff equation. Journal of Mathematical Physics, v. 59, p. 011506-1-011506-6, 2018Tradução . . Disponível em: http://dx.doi.org/10.1063/1.5021685. Acesso em: 10 ago. 2022.
    • APA

      Iturriaga, L., & Massa, E. T. (2018). On necessary conditions for the comparison principle and the sub- and supersolution method for the stationary Kirchhoff equation. Journal of Mathematical Physics, 59, 011506-1-011506-6. doi:10.1063/1.5021685
    • NLM

      Iturriaga L, Massa ET. On necessary conditions for the comparison principle and the sub- and supersolution method for the stationary Kirchhoff equation [Internet]. Journal of Mathematical Physics. 2018 ; 59 011506-1-011506-6.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.5021685
    • Vancouver

      Iturriaga L, Massa ET. On necessary conditions for the comparison principle and the sub- and supersolution method for the stationary Kirchhoff equation [Internet]. Journal of Mathematical Physics. 2018 ; 59 011506-1-011506-6.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.5021685
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, ANÁLISE ESPECTRAL, ESTABILIDADE DE SISTEMAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso e O'CARROLL, M. Scaled lattice fermion fields, stability bounds, and regularity. Journal of Mathematical Physics, v. Fe 2018, n. 2, p. 022301-1-022301-28, 2018Tradução . . Disponível em: http://dx.doi.org/10.1063/1.5022960. Acesso em: 10 ago. 2022.
    • APA

      Faria da Veiga, P. A., & O'Carroll, M. (2018). Scaled lattice fermion fields, stability bounds, and regularity. Journal of Mathematical Physics, Fe 2018( 2), 022301-1-022301-28. doi:10.1063/1.5022960
    • NLM

      Faria da Veiga PA, O'Carroll M. Scaled lattice fermion fields, stability bounds, and regularity [Internet]. Journal of Mathematical Physics. 2018 ; Fe 2018( 2): 022301-1-022301-28.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.5022960
    • Vancouver

      Faria da Veiga PA, O'Carroll M. Scaled lattice fermion fields, stability bounds, and regularity [Internet]. Journal of Mathematical Physics. 2018 ; Fe 2018( 2): 022301-1-022301-28.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.5022960
  • Source: Journal of Mathematical Physics. Unidades: IME, IF

    Subject: FÍSICA MATEMÁTICA

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JÄKEL, Christian Dieter e WRESZINSKI, Walter Felipe. Stability of relativistic quantum electrodynamics in the Coulomb gauge. Journal of Mathematical Physics, v. 59, p. 032303-1-032303-12, 2018Tradução . . Disponível em: https://doi.org/10.1063/1.5011031. Acesso em: 10 ago. 2022.
    • APA

      Jäkel, C. D., & Wreszinski, W. F. (2018). Stability of relativistic quantum electrodynamics in the Coulomb gauge. Journal of Mathematical Physics, 59, 032303-1-032303-12. doi:10.1063/1.5011031
    • NLM

      Jäkel CD, Wreszinski WF. Stability of relativistic quantum electrodynamics in the Coulomb gauge [Internet]. Journal of Mathematical Physics. 2018 ; 59 032303-1-032303-12.[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/1.5011031
    • Vancouver

      Jäkel CD, Wreszinski WF. Stability of relativistic quantum electrodynamics in the Coulomb gauge [Internet]. Journal of Mathematical Physics. 2018 ; 59 032303-1-032303-12.[citado 2022 ago. 10 ] Available from: https://doi.org/10.1063/1.5011031
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subject: MECÂNICA DOS FLUÍDOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREBENEV, V. N et al. Symmetry transformations of an ideal steady fluid flow determined by a potential function. Journal of Mathematical Physics, v. 57, n. 10, p. 1-15, 2016Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4965224. Acesso em: 10 ago. 2022.
    • APA

      Grebenev, V. N., Oberlack, M., Megrabov, A. G., & Grichkov, A. (2016). Symmetry transformations of an ideal steady fluid flow determined by a potential function. Journal of Mathematical Physics, 57( 10), 1-15. doi:10.1063/1.4965224
    • NLM

      Grebenev VN, Oberlack M, Megrabov AG, Grichkov A. Symmetry transformations of an ideal steady fluid flow determined by a potential function [Internet]. Journal of Mathematical Physics. 2016 ; 57( 10): 1-15.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4965224
    • Vancouver

      Grebenev VN, Oberlack M, Megrabov AG, Grichkov A. Symmetry transformations of an ideal steady fluid flow determined by a potential function [Internet]. Journal of Mathematical Physics. 2016 ; 57( 10): 1-15.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4965224
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: FÍSICA MATEMÁTICA, ANÁLISE ESPECTRAL, ESTABILIDADE DE SISTEMAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FARIA DA VEIGA, Paulo Afonso e O'CARROLL, M e ALVITES, José C. Valencia. One-baryon spectrum and analytical properties of one-baryon dispersion curves in 3 + 1 dimensional strongly coupled lattice QCD with three flavors. Journal of Mathematical Physics, v. 57, n. 3, p. 032303-1- 032303-28, 2016Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4944585. Acesso em: 10 ago. 2022.
    • APA

      Faria da Veiga, P. A., O'Carroll, M., & Alvites, J. C. V. (2016). One-baryon spectrum and analytical properties of one-baryon dispersion curves in 3 + 1 dimensional strongly coupled lattice QCD with three flavors. Journal of Mathematical Physics, 57( 3), 032303-1- 032303-28. doi:10.1063/1.4944585
    • NLM

      Faria da Veiga PA, O'Carroll M, Alvites JCV. One-baryon spectrum and analytical properties of one-baryon dispersion curves in 3 + 1 dimensional strongly coupled lattice QCD with three flavors [Internet]. Journal of Mathematical Physics. 2016 ; 57( 3): 032303-1- 032303-28.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4944585
    • Vancouver

      Faria da Veiga PA, O'Carroll M, Alvites JCV. One-baryon spectrum and analytical properties of one-baryon dispersion curves in 3 + 1 dimensional strongly coupled lattice QCD with three flavors [Internet]. Journal of Mathematical Physics. 2016 ; 57( 3): 032303-1- 032303-28.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4944585
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: C* ÁLGEBRAS, FÍSICA MATEMÁTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e PAULINO, Daniel Vasques. C*-completions and the DFR-algebra. Journal of Mathematical Physics, v. 57, n. 2, p. 1-31, 2016Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4940718. Acesso em: 10 ago. 2022.
    • APA

      Forger, F. M., & Paulino, D. V. (2016). C*-completions and the DFR-algebra. Journal of Mathematical Physics, 57( 2), 1-31. doi:10.1063/1.4940718
    • NLM

      Forger FM, Paulino DV. C*-completions and the DFR-algebra [Internet]. Journal of Mathematical Physics. 2016 ; 57( 2): 1-31.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4940718
    • Vancouver

      Forger FM, Paulino DV. C*-completions and the DFR-algebra [Internet]. Journal of Mathematical Physics. 2016 ; 57( 2): 1-31.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4940718
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: TEORIA QUÂNTICA DE CAMPO, FÍSICA MATEMÁTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FORGER, Frank Michael e SALLES, Mário Otávio. On covariant Poisson brackets in classical field theory. Journal of Mathematical Physics, v. 56, n. article º 102901, p. [26 ], 2015Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4932011. Acesso em: 10 ago. 2022.
    • APA

      Forger, F. M., & Salles, M. O. (2015). On covariant Poisson brackets in classical field theory. Journal of Mathematical Physics, 56( article º 102901), [26 ]. doi:10.1063/1.4932011
    • NLM

      Forger FM, Salles MO. On covariant Poisson brackets in classical field theory [Internet]. Journal of Mathematical Physics. 2015 ; 56( article º 102901): [26 ].[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4932011
    • Vancouver

      Forger FM, Salles MO. On covariant Poisson brackets in classical field theory [Internet]. Journal of Mathematical Physics. 2015 ; 56( article º 102901): [26 ].[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4932011
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: DESIGUALDADES, GRUPOS DE LORENTZ, MECÂNICA QUÂNTICA, FÍSICA MATEMÁTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABRERA, Alejandro et al. Differentiability of correlations in realistic quantum mechanics. Journal of Mathematical Physics, v. 56, n. 9, 2015Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4931176. Acesso em: 10 ago. 2022.
    • APA

      Cabrera, A., Faria, É. de, Pujals, E., & Tresser, C. (2015). Differentiability of correlations in realistic quantum mechanics. Journal of Mathematical Physics, 56( 9). doi:10.1063/1.4931176
    • NLM

      Cabrera A, Faria É de, Pujals E, Tresser C. Differentiability of correlations in realistic quantum mechanics [Internet]. Journal of Mathematical Physics. 2015 ; 56( 9):[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4931176
    • Vancouver

      Cabrera A, Faria É de, Pujals E, Tresser C. Differentiability of correlations in realistic quantum mechanics [Internet]. Journal of Mathematical Physics. 2015 ; 56( 9):[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4931176
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARROCOS, Marcus Antonio Mendonça e PEREIRA, Antônio Luiz. Eigenvalues of the Neumann Laplacian in symmetric regions. Journal of Mathematical Physics, v. No 2015, n. article º 111502, p. 29 , 2015Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4935300. Acesso em: 10 ago. 2022.
    • APA

      Marrocos, M. A. M., & Pereira, A. L. (2015). Eigenvalues of the Neumann Laplacian in symmetric regions. Journal of Mathematical Physics, No 2015( article º 111502), 29 . doi:10.1063/1.4935300
    • NLM

      Marrocos MAM, Pereira AL. Eigenvalues of the Neumann Laplacian in symmetric regions [Internet]. Journal of Mathematical Physics. 2015 ; No 2015( article º 111502): 29 .[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4935300
    • Vancouver

      Marrocos MAM, Pereira AL. Eigenvalues of the Neumann Laplacian in symmetric regions [Internet]. Journal of Mathematical Physics. 2015 ; No 2015( article º 111502): 29 .[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4935300
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: MECÂNICA ESTATÍSTICA, PROCESSOS ESTOCÁSTICOS ESPECIAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHUTZ, Gunter M. Self-duality for the two-component asymmetric simple exclusion process. Journal of Mathematical Physics, v. 56, n. 8, p. [20 ], 2015Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4929663. Acesso em: 10 ago. 2022.
    • APA

      Belitsky, V., & Schutz, G. M. (2015). Self-duality for the two-component asymmetric simple exclusion process. Journal of Mathematical Physics, 56( 8), [20 ]. doi:10.1063/1.4929663
    • NLM

      Belitsky V, Schutz GM. Self-duality for the two-component asymmetric simple exclusion process [Internet]. Journal of Mathematical Physics. 2015 ; 56( 8): [20 ].[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4929663
    • Vancouver

      Belitsky V, Schutz GM. Self-duality for the two-component asymmetric simple exclusion process [Internet]. Journal of Mathematical Physics. 2015 ; 56( 8): [20 ].[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4929663
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: ÁLGEBRA, FÍSICA MATEMÁTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DHERIN, Benoit e MENCATTINI, Igor. G-systems and deformation of G-actions on 'R POT.D'. Journal of Mathematical Physics, v. 55, n. ja 2014, p. 011702-1-011702-9, 2014Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4861600. Acesso em: 10 ago. 2022.
    • APA

      Dherin, B., & Mencattini, I. (2014). G-systems and deformation of G-actions on 'R POT.D'. Journal of Mathematical Physics, 55( ja 2014), 011702-1-011702-9. doi:10.1063/1.4861600
    • NLM

      Dherin B, Mencattini I. G-systems and deformation of G-actions on 'R POT.D' [Internet]. Journal of Mathematical Physics. 2014 ; 55( ja 2014): 011702-1-011702-9.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4861600
    • Vancouver

      Dherin B, Mencattini I. G-systems and deformation of G-actions on 'R POT.D' [Internet]. Journal of Mathematical Physics. 2014 ; 55( ja 2014): 011702-1-011702-9.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4861600
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subjects: SUPERÁLGEBRAS DE LIE, ÁLGEBRAS DE LIE

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUZZO JÚNIOR, Henrique e HERNÁNDEZ, I e SÁNCHEZ-VALENZUELA, O. A. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2). Journal of Mathematical Physics, v. 55, n. 9, 2014Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4895917. Acesso em: 10 ago. 2022.
    • APA

      Guzzo Júnior, H., Hernández, I., & Sánchez-Valenzuela, O. A. (2014). Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2). Journal of Mathematical Physics, 55( 9). doi:10.1063/1.4895917
    • NLM

      Guzzo Júnior H, Hernández I, Sánchez-Valenzuela OA. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2) [Internet]. Journal of Mathematical Physics. 2014 ; 55( 9):[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4895917
    • Vancouver

      Guzzo Júnior H, Hernández I, Sánchez-Valenzuela OA. Classification of real Lie superalgebras based on a simple Lie algebra, giving rise to interesting examples involving su(2,2) [Internet]. Journal of Mathematical Physics. 2014 ; 55( 9):[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4895917
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: ÁLGEBRA, FÍSICA MATEMÁTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DHERIN, Benoit e MENCATTINI, Igor. Deformations of momentum maps and G-systems. Journal of Mathematical Physics, v. no 2014, n. 11, p. 111703-1-111703-21, 2014Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4901225. Acesso em: 10 ago. 2022.
    • APA

      Dherin, B., & Mencattini, I. (2014). Deformations of momentum maps and G-systems. Journal of Mathematical Physics, no 2014( 11), 111703-1-111703-21. doi:10.1063/1.4901225
    • NLM

      Dherin B, Mencattini I. Deformations of momentum maps and G-systems [Internet]. Journal of Mathematical Physics. 2014 ; no 2014( 11): 111703-1-111703-21.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4901225
    • Vancouver

      Dherin B, Mencattini I. Deformations of momentum maps and G-systems [Internet]. Journal of Mathematical Physics. 2014 ; no 2014( 11): 111703-1-111703-21.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4901225
  • Source: Journal of Mathematical Physics. Unidade: IME

    Subject: MECÂNICA ESTATÍSTICA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Juan et al. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, v. 54, n. 6, p. 1-17, 2013Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4808101. Acesso em: 10 ago. 2022.
    • APA

      Hernandez, J., Suhov, Y., Iambartsev, A., & Zohren, S. (2013). Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations. Journal of Mathematical Physics, 54( 6), 1-17. doi:10.1063/1.4808101
    • NLM

      Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4808101
    • Vancouver

      Hernandez J, Suhov Y, Iambartsev A, Zohren S. Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations [Internet]. Journal of Mathematical Physics. 2013 ; 54( 6): 1-17.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4808101
  • Source: Journal of Mathematical Physics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marcio Antonio Jorge e MA, To Fu. Long-time dynamics for a class of Kirchhoff models with memory. Journal of Mathematical Physics, v. 54, n. 2, p. 021505-1-021505-15, 2013Tradução . . Disponível em: http://dx.doi.org/10.1063/1.4792606. Acesso em: 10 ago. 2022.
    • APA

      Silva, M. A. J., & Ma, T. F. (2013). Long-time dynamics for a class of Kirchhoff models with memory. Journal of Mathematical Physics, 54( 2), 021505-1-021505-15. doi:10.1063/1.4792606
    • NLM

      Silva MAJ, Ma TF. Long-time dynamics for a class of Kirchhoff models with memory [Internet]. Journal of Mathematical Physics. 2013 ; 54( 2): 021505-1-021505-15.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4792606
    • Vancouver

      Silva MAJ, Ma TF. Long-time dynamics for a class of Kirchhoff models with memory [Internet]. Journal of Mathematical Physics. 2013 ; 54( 2): 021505-1-021505-15.[citado 2022 ago. 10 ] Available from: http://dx.doi.org/10.1063/1.4792606

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022