Filters : "Journal of Mathematical Analysis and Applications" Limpar

Filters



Refine with date range


  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Variedades Complexas

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOI, Andrea; MOSSA, Roberto; ZUDDAS, Fabio. Finite TYCZ expansions and cscK metrics. Journal of Mathematical Analysis and Applications, New York, Elsevier BV, v. 484, n. 1, p. 1-20, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2019.123715 > DOI: 10.1016/j.jmaa.2019.123715.
    • APA

      Loi, A., Mossa, R., & Zuddas, F. (2020). Finite TYCZ expansions and cscK metrics. Journal of Mathematical Analysis and Applications, 484( 1), 1-20. doi:10.1016/j.jmaa.2019.123715
    • NLM

      Loi A, Mossa R, Zuddas F. Finite TYCZ expansions and cscK metrics [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 1): 1-20.Available from: https://doi.org/10.1016/j.jmaa.2019.123715
    • Vancouver

      Loi A, Mossa R, Zuddas F. Finite TYCZ expansions and cscK metrics [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 1): 1-20.Available from: https://doi.org/10.1016/j.jmaa.2019.123715
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Problemas De Valores Iniciais, Espaços De Frechet, Operadores Lineares, Operadores Pseudodiferenciais, Análise Harmônica Em Espaços Euclidianos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis; SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, San Diego, Academic Press, v. 484, n. 2, p. 1-15, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2019.123612 > DOI: 10.1016/j.jmaa.2019.123612.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Teoria Das Singularidades, Simetria, Invariantes

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes; LABOURIAU, Isabel Salgado; MANOEL, Miriam Garcia. Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. No 2020, n. 2, p. 1-15, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2020.124348 > DOI: 10.1016/j.jmaa.2020.124348.
    • APA

      Baptistelli, P. H., Labouriau, I. S., & Manoel, M. G. (2020). Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, No 2020( 2), 1-15. doi:10.1016/j.jmaa.2020.124348
    • NLM

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2020.124348
    • Vancouver

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2020.124348
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Equações Diferenciais Parciais

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin Gonzalo; SICILIANO, Gaetano. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, New York, Elsevier, v. 474, n. 1, p. 544-571, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.01.063 > DOI: 10.1016/j.jmaa.2019.01.063.
    • APA

      Murcia, E. G., & Siciliano, G. (2019). Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, 474( 1), 544-571. doi:10.1016/j.jmaa.2019.01.063
    • NLM

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.01.063
    • Vancouver

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.01.063
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Métodos Variacionais, Operadores Elíticos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARCOYA, David; PAIVA, Francisco Odair de; MENDOZA, Jose Miguel. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, San Diego, Academic Press, v. 480, n. 2, p. 1-12, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123401 > DOI: 10.1016/j.jmaa.2019.123401.
    • APA

      Arcoya, D., Paiva, F. O. de, & Mendoza, J. M. (2019). Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, 480( 2), 1-12. doi:10.1016/j.jmaa.2019.123401
    • NLM

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
    • Vancouver

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Equações Diferenciais Parciais, Equação De Schrodinger

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia. On the standing waves of the NLS-log equation with a point interaction on a star graph. Journal of Mathematical Analysis and Applications, New York, Elsevier, v. 473, n. 1, p. 53-70, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.12.019 > DOI: 10.1016/j.jmaa.2018.12.019.
    • APA

      Goloshchapova, N. (2019). On the standing waves of the NLS-log equation with a point interaction on a star graph. Journal of Mathematical Analysis and Applications, 473( 1), 53-70. doi:10.1016/j.jmaa.2018.12.019
    • NLM

      Goloshchapova N. On the standing waves of the NLS-log equation with a point interaction on a star graph [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 473( 1): 53-70.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.12.019
    • Vancouver

      Goloshchapova N. On the standing waves of the NLS-log equation with a point interaction on a star graph [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 473( 1): 53-70.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.12.019
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Equações Não Lineares, Métodos Topológicos

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS JR., J.R.; SICILIANO, Gaetano. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, New York, Elsevier, v. 480, n. 2, p. 1-19, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123394 > DOI: 10.1016/j.jmaa.2019.123394.
    • APA

      Santos Jr., J. R., & Siciliano, G. (2019). On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, 480( 2), 1-19. doi:10.1016/j.jmaa.2019.123394
    • NLM

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123394
    • Vancouver

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123394
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Teoremas Limites, Cadeias De Markov

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREJO, Carolina Bueno; RODRÍGUEZ, Pablo Martín. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, Maryland Heights, Academic Press, v. 480, p. 1-10, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123402 > DOI: 10.1016/j.jmaa.2019.123402.
    • APA

      Grejo, C. B., & Rodríguez, P. M. (2019). Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, 480, 1-10. doi:10.1016/j.jmaa.2019.123402
    • NLM

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
    • Vancouver

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
  • In: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: Operadores, Dinâmica Topológica

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAYART, Frédéric; DARJI, Udayan B.; PIRES, Benito Frazão. Topological transitivity and mixing of composition operators. Journal of Mathematical Analysis and Applications, New York, v. 465, n. 1, p. 125-139, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.04.063 > DOI: 10.1016/j.jmaa.2018.04.063.
    • APA

      Bayart, F., Darji, U. B., & Pires, B. F. (2018). Topological transitivity and mixing of composition operators. Journal of Mathematical Analysis and Applications, 465( 1), 125-139. doi:10.1016/j.jmaa.2018.04.063
    • NLM

      Bayart F, Darji UB, Pires BF. Topological transitivity and mixing of composition operators [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 125-139.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.063
    • Vancouver

      Bayart F, Darji UB, Pires BF. Topological transitivity and mixing of composition operators [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 125-139.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.063
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Equações Diferenciais Parciais Elíticas De 2ª Ordem, Equações Diferenciais Parciais

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes; PEREIRA, Marcone Corrêa. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, Maryland Heights, Academic Press, v. 465, n. 1, p. 379-402, 2018. Disponível em: < https://doi.org/10.1016/j.jmaa.2018.05.015 > DOI: 10.1016/j.jmaa.2018.05.015.
    • APA

      Lopes, P. T. P., & Pereira, M. C. (2018). Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, 465( 1), 379-402. doi:10.1016/j.jmaa.2018.05.015
    • NLM

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
    • Vancouver

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Teoria Qualitativa, Equações Diferenciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Wilker; OLIVEIRA, Regilene Delazari dos Santos; ROMANOVSKI, Valery G. Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. No 2018, n. 2, p. 874-892, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.07.053 > DOI: 10.1016/j.jmaa.2018.07.053.
    • APA

      Fernandes, W., Oliveira, R. D. dos S., & Romanovski, V. G. (2018). Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, No 2018( 2), 874-892. doi:10.1016/j.jmaa.2018.07.053
    • NLM

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
    • Vancouver

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: álgebras De Operadores

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana; GALEGO, Eloi Medina; GONZÁLEZ, Manuel. Convolution operators on group algebras which are tauberian or cotauberian. Journal of Mathematical Analysis and Applications, New York, Elsevier, v. 465, n. 1, p. 309-317, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.05.007 > DOI: 10.1016/j.jmaa.2018.05.007.
    • APA

      Cely, L., Galego, E. M., & González, M. (2018). Convolution operators on group algebras which are tauberian or cotauberian. Journal of Mathematical Analysis and Applications, 465( 1), 309-317. doi:10.1016/j.jmaa.2018.05.007
    • NLM

      Cely L, Galego EM, González M. Convolution operators on group algebras which are tauberian or cotauberian [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 309-317.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.007
    • Vancouver

      Cely L, Galego EM, González M. Convolution operators on group algebras which are tauberian or cotauberian [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 309-317.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.007
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Equações Diferenciais, Equação De Schrodinger

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank D. M; CARVALHO, Alexandre Nolasco de; DLOTKO, Tomasz; NASCIMENTO, Marcelo J. D. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 457, n. Ja 2018, p. 336-360, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.08.014 > DOI: 10.1016/j.jmaa.2017.08.014.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Espaços De Banach

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCON-VILLAMIZAR, Michael A. On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, New York, Elsevier, v. 467, n. 2, p. 1287-1296, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.08.003 > DOI: 10.1016/j.jmaa.2018.08.003.
    • APA

      Galego, E. M., & Rincon-Villamizar, M. A. (2018). On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, 467( 2), 1287-1296. doi:10.1016/j.jmaa.2018.08.003
    • NLM

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.08.003
    • Vancouver

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.08.003
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Espaços De Besov, Operadores Lineares

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, San Diego, Elsevier, v. 465, n. 1, p. Se 2018, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.04.077 > DOI: 10.1016/j.jmaa.2018.04.077.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, 465( 1), Se 2018. doi:10.1016/j.jmaa.2018.04.077
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077
  • In: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: Matemática Aplicada

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo. On abstract differential equations with state dependent non-local conditions. Journal of Mathematical Analysis and Applications, New York, v. 466, n. 1, p. 408-425, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.05.080 > DOI: 10.1016/j.jmaa.2018.05.080.
    • APA

      Hernandez, E. (2018). On abstract differential equations with state dependent non-local conditions. Journal of Mathematical Analysis and Applications, 466( 1), 408-425. doi:10.1016/j.jmaa.2018.05.080
    • NLM

      Hernandez E. On abstract differential equations with state dependent non-local conditions [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 466( 1): 408-425.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.080
    • Vancouver

      Hernandez E. On abstract differential equations with state dependent non-local conditions [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 466( 1): 408-425.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.080
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; PIRES, Leonardo. Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 452, n. 1, p. 258-296, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.03.008 > DOI: 10.1016/j.jmaa.2017.03.008.
    • APA

      Carvalho, A. N. de, & Pires, L. (2017). Rate of convergence of attractors for singularly perturbed semilinear problems. Journal of Mathematical Analysis and Applications, 452( 1), 258-296. doi:10.1016/j.jmaa.2017.03.008
    • NLM

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
    • Vancouver

      Carvalho AN de, Pires L. Rate of convergence of attractors for singularly perturbed semilinear problems [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 452( 1): 258-296.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.03.008
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Análise Harmônica Em Grupos De Lie, Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana; GALEGO, Eloi Medina; GONZÁLEZ, Manuel. Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications[S.l.], Academic Press, v. 446, n. 1, p. 299-306, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2016.08.057 > DOI: 10.1016/j.jmaa.2016.08.057.
    • APA

      Cely, L., Galego, E. M., & González, M. (2017). Tauberian convolution operators acting on L1(G). Journal of Mathematical Analysis and Applications, 446( 1), 299-306. doi:10.1016/j.jmaa.2016.08.057
    • NLM

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.08.057
    • Vancouver

      Cely L, Galego EM, González M. Tauberian convolution operators acting on L1(G) [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 446( 1): 299-306.Available from: http://dx.doi.org/10.1016/j.jmaa.2016.08.057
  • In: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: Equações Diferenciais Ordinárias, Equações Diferenciais Parciais, Equações Da Onda, Atratores

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M; CARVALHO, Alexandre Nolasco de; CHOLEWA, J. W; NASCIMENTO, M. J. D. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, San Diego, Academic Press/Elsevier, v. 450, n. 1, p. 377-405, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.01.024 > DOI: 10.1016/j.jmaa.2017.01.024.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.024
  • In: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: Análise Harmônica Em Espaços Euclidianos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIDRAL, Fabiano Carlos; CÔRTES, Vinícius Morelli; GALEGO, Eloi Medina. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications[S.l.], Academic Press, v. 450, n. 1, p. 12-20, 2017. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.01.009 > DOI: 10.1016/j.jmaa.2017.01.009.
    • APA

      Cidral, F. C., Côrtes, V. M., & Galego, E. M. (2017). A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X. Journal of Mathematical Analysis and Applications, 450( 1), 12-20. doi:10.1016/j.jmaa.2017.01.009
    • NLM

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.009
    • Vancouver

      Cidral FC, Côrtes VM, Galego EM. A generalized Banach–Stone theorem for C0(K,X) spaces via the modulus of convexity of X [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 12-20.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.01.009


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020