Filters : "Journal of Mathematical Analysis and Applications" Limpar

Filters



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BANACH, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de et al. Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, v. 509, n. 2, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125945. Acesso em: 18 ago. 2022.
    • APA

      Carvalho, A. N. de, Cunha, A. C., Langa, J. A., & Robinson, J. C. (2022). Finite-dimensional negatively invariant subsets of Banach spaces. Journal of Mathematical Analysis and Applications, 509( 2), 1-21. doi:10.1016/j.jmaa.2021.125945
    • NLM

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
    • Vancouver

      Carvalho AN de, Cunha AC, Langa JA, Robinson JC. Finite-dimensional negatively invariant subsets of Banach spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 509( 2): 1-21.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125945
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, OPERADORES SETORIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e NASCIMENTO, Marcelo José Dias e SANTIAGO, Eric B. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, v. 506, n. 2, p. 1-42, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125670. Acesso em: 18 ago. 2022.
    • APA

      Bonotto, E. de M., Nascimento, M. J. D., & Santiago, E. B. (2022). Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system. Journal of Mathematical Analysis and Applications, 506( 2), 1-42. doi:10.1016/j.jmaa.2021.125670
    • NLM

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
    • Vancouver

      Bonotto E de M, Nascimento MJD, Santiago EB. Long-time behaviour for a non-autonomous Klein-Gordon-Zakharov system [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 506( 2): 1-42.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125670
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA, Estefani Moraes e VALERO, José. Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, v. 507, n. 2, p. 1-25, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125801. Acesso em: 18 ago. 2022.
    • APA

      Moreira, E. M., & Valero, J. (2022). Structure of the attractor for a non-local Chafee-Infante problem. Journal of Mathematical Analysis and Applications, 507( 2), 1-25. doi:10.1016/j.jmaa.2021.125801
    • NLM

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
    • Vancouver

      Moreira EM, Valero J. Structure of the attractor for a non-local Chafee-Infante problem [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 2): 1-25.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125801
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ANÁLISE FUNCIONAL, ESPAÇOS HOMOGÊNEOS, POLINÔMIOS

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Victor Simões et al. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, v. 516, n. 1, p. 1-26, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2022.126487. Acesso em: 18 ago. 2022.
    • APA

      Barbosa, V. S., Gregori, P., Peron, A. P., & Porcu, E. (2022). Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces. Journal of Mathematical Analysis and Applications, 516( 1), 1-26. doi:10.1016/j.jmaa.2022.126487
    • NLM

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
    • Vancouver

      Barbosa VS, Gregori P, Peron AP, Porcu E. Series expansions among weighted Lebesgue function spaces and applications to positive definite functions on compact two-point homogeneous spaces [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 516( 1): 1-26.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2022.126487
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin Gonzalo e SICILIANO, Gaetano. Corrigendum to “Least energy radial sign-changing solution for the Schrödinger-Poisson system in R3 under an asymptotically cubic nonlinearity” [J. Math. Anal. Appl. 474 (2019) 544–571]. Journal of Mathematical Analysis and Applications, v. 507, n. 1, p. 1-2, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125756. Acesso em: 18 ago. 2022.
    • APA

      Murcia, E. G., & Siciliano, G. (2022). Corrigendum to “Least energy radial sign-changing solution for the Schrödinger-Poisson system in R3 under an asymptotically cubic nonlinearity” [J. Math. Anal. Appl. 474 (2019) 544–571]. Journal of Mathematical Analysis and Applications, 507( 1), 1-2. doi:10.1016/j.jmaa.2021.125756
    • NLM

      Murcia EG, Siciliano G. Corrigendum to “Least energy radial sign-changing solution for the Schrödinger-Poisson system in R3 under an asymptotically cubic nonlinearity” [J. Math. Anal. Appl. 474 (2019) 544–571] [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 1): 1-2.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125756
    • Vancouver

      Murcia EG, Siciliano G. Corrigendum to “Least energy radial sign-changing solution for the Schrödinger-Poisson system in R3 under an asymptotically cubic nonlinearity” [J. Math. Anal. Appl. 474 (2019) 544–571] [Internet]. Journal of Mathematical Analysis and Applications. 2022 ; 507( 1): 1-2.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125756
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, OPERADORES LINEARES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAUSEY, Ryan. M e GALEGO, Eloi Medina e SAMUEL, Christian. On injective tensor powers of ℓ1. Journal of Mathematical Analysis and Applications, v. 494, n. art. 124581, p. 1-4, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124581. Acesso em: 18 ago. 2022.
    • APA

      Causey, R. M., Galego, E. M., & Samuel, C. (2021). On injective tensor powers of ℓ1. Journal of Mathematical Analysis and Applications, 494( art. 124581), 1-4. doi:10.1016/j.jmaa.2020.124581
    • NLM

      Causey RM, Galego EM, Samuel C. On injective tensor powers of ℓ1 [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( art. 124581): 1-4.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124581
    • Vancouver

      Causey RM, Galego EM, Samuel C. On injective tensor powers of ℓ1 [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( art. 124581): 1-4.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124581
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIU, Zhisu e SICILIANO, Gaetano. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case. Journal of Mathematical Analysis and Applications, v. 503, n. 2, p. 1-22, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125326. Acesso em: 18 ago. 2022.
    • APA

      Liu, Z., & Siciliano, G. (2021). A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case. Journal of Mathematical Analysis and Applications, 503( 2), 1-22. doi:10.1016/j.jmaa.2021.125326
    • NLM

      Liu Z, Siciliano G. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 503( 2): 1-22.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125326
    • Vancouver

      Liu Z, Siciliano G. A perturbation approach for the Schrödinger-Born-Infeld system: solutions in the subcritical and critical case [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 503( 2): 1-22.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125326
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subject: EQUAÇÕES INTEGRAIS LINEARES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa e SASTRE-GOMEZ, Silvia. Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124729. Acesso em: 18 ago. 2022.
    • APA

      Pereira, M. C., & Sastre-Gomez, S. (2021). Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, 495( 2), 1-21. doi:10.1016/j.jmaa.2020.124729
    • NLM

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
    • Vancouver

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124729
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, OPERADORES ELÍTICOS, OPERADORES PSEUDODIFERENCIAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOUNIE, J. e PICON, Tiago Henrique. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, v. 494, n. 1, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124598. Acesso em: 18 ago. 2022.
    • APA

      Hounie, J., & Picon, T. H. (2021). Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators. Journal of Mathematical Analysis and Applications, 494( 1). doi:10.1016/j.jmaa.2020.124598
    • NLM

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598
    • Vancouver

      Hounie J, Picon TH. Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( 1):[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124598
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA

    Available on 2023-09-01Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, v. 500, n. 2, p. 1-27, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2021.125134. Acesso em: 18 ago. 2022.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS HIPERBÓLICOS, VALORES PRÓPRIOS, VARIEDADES MÍNIMAS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante e MANFIO, Fernando. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, v. 495, n. 2, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124759. Acesso em: 18 ago. 2022.
    • APA

      Bezerra, A. C., & Manfio, F. (2021). Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, 495( 2), 1-10. doi:10.1016/j.jmaa.2020.124759
    • NLM

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
    • Vancouver

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124759
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Paulo Leandro Dattori da e GONZALEZ, Rafael Borro e SILVA, Marcio A. Jorge. Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, v. 492, n. 2, p. 1-36, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124467. Acesso em: 18 ago. 2022.
    • APA

      Silva, P. L. D. da, Gonzalez, R. B., & Silva, M. A. J. (2020). Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, 492( 2), 1-36. doi:10.1016/j.jmaa.2020.124467
    • NLM

      Silva PLD da, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
    • Vancouver

      Silva PLD da, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124467
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, SEMIGRUPOS DE OPERADORES LINEARES, EQUAÇÕES DIFERENCIAIS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo. Abstract impulsive differential equations without predefined time impulses. Journal of Mathematical Analysis and Applications, v. 491, n. 1, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124288. Acesso em: 18 ago. 2022.
    • APA

      Hernandez, E. (2020). Abstract impulsive differential equations without predefined time impulses. Journal of Mathematical Analysis and Applications, 491( 1). doi:10.1016/j.jmaa.2020.124288
    • NLM

      Hernandez E. Abstract impulsive differential equations without predefined time impulses [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 491( 1):[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124288
    • Vancouver

      Hernandez E. Abstract impulsive differential equations without predefined time impulses [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 491( 1):[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124288
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subject: VARIEDADES COMPLEXAS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOI, Andrea e MOSSA, Roberto e ZUDDAS, Fabio. Finite TYCZ expansions and cscK metrics. Journal of Mathematical Analysis and Applications, v. 484, n. 1, p. 1-20, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123715. Acesso em: 18 ago. 2022.
    • APA

      Loi, A., Mossa, R., & Zuddas, F. (2020). Finite TYCZ expansions and cscK metrics. Journal of Mathematical Analysis and Applications, 484( 1), 1-20. doi:10.1016/j.jmaa.2019.123715
    • NLM

      Loi A, Mossa R, Zuddas F. Finite TYCZ expansions and cscK metrics [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 1): 1-20.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123715
    • Vancouver

      Loi A, Mossa R, Zuddas F. Finite TYCZ expansions and cscK metrics [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 1): 1-20.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123715
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DE KOLMOGOROV

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e TROFIMCHUK, Sergei. Traveling waves solutions for partial neutral differential equations. Journal of Mathematical Analysis and Applications, v. 481, n. 1, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123458. Acesso em: 18 ago. 2022.
    • APA

      Hernandez, E., & Trofimchuk, S. (2020). Traveling waves solutions for partial neutral differential equations. Journal of Mathematical Analysis and Applications, 481( 1). doi:10.1016/j.jmaa.2019.123458
    • NLM

      Hernandez E, Trofimchuk S. Traveling waves solutions for partial neutral differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 481( 1):[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123458
    • Vancouver

      Hernandez E, Trofimchuk S. Traveling waves solutions for partial neutral differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 481( 1):[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123458
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis e SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, v. 484, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2019.123612. Acesso em: 18 ago. 2022.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SIMETRIA, INVARIANTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes e LABOURIAU, Isabel Salgado e MANOEL, Miriam Garcia. Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, v. No 2020, n. 2, p. 1-15, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2020.124348. Acesso em: 18 ago. 2022.
    • APA

      Baptistelli, P. H., Labouriau, I. S., & Manoel, M. G. (2020). Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, No 2020( 2), 1-15. doi:10.1016/j.jmaa.2020.124348
    • NLM

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
    • Vancouver

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.[citado 2022 ago. 18 ] Available from: https://doi.org/10.1016/j.jmaa.2020.124348
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin Gonzalo e SICILIANO, Gaetano. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, v. 474, n. 1, p. 544-571, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2019.01.063. Acesso em: 18 ago. 2022.
    • APA

      Murcia, E. G., & Siciliano, G. (2019). Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, 474( 1), 544-571. doi:10.1016/j.jmaa.2019.01.063
    • NLM

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.[citado 2022 ago. 18 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.01.063
    • Vancouver

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.[citado 2022 ago. 18 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.01.063
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: MÉTODOS VARIACIONAIS, OPERADORES ELÍTICOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARCOYA, David e PAIVA, Francisco Odair de e MENDOZA, Jose Miguel. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, v. 480, n. 2, p. 1-12, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2019.123401. Acesso em: 18 ago. 2022.
    • APA

      Arcoya, D., Paiva, F. O. de, & Mendoza, J. M. (2019). Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, 480( 2), 1-12. doi:10.1016/j.jmaa.2019.123401
    • NLM

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.[citado 2022 ago. 18 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
    • Vancouver

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.[citado 2022 ago. 18 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES NÃO LINEARES, MÉTODOS TOPOLÓGICOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS JR., J.R. e SICILIANO, Gaetano. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, v. 480, n. 2, p. 1-19, 2019Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jmaa.2019.123394. Acesso em: 18 ago. 2022.
    • APA

      Santos Jr., J. R., & Siciliano, G. (2019). On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, 480( 2), 1-19. doi:10.1016/j.jmaa.2019.123394
    • NLM

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.[citado 2022 ago. 18 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123394
    • Vancouver

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.[citado 2022 ago. 18 ] Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123394

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022