Filtros : "Journal of Mathematical Analysis and Applications" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: ANÁLISE FUNCIONAL, OPERADORES LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAUSEY, Ryan. M; GALEGO, Eloi Medina; SAMUEL, Christian. On injective tensor powers of ℓ1. Journal of Mathematical Analysis and Applications, New York, v. 494, n. art. 124581, p. 1-4, 2021. Disponível em: < https://doi.org/10.1016/j.jmaa.2020.124581 > DOI: 10.1016/j.jmaa.2020.124581.
    • APA

      Causey, R. M., Galego, E. M., & Samuel, C. (2021). On injective tensor powers of ℓ1. Journal of Mathematical Analysis and Applications, 494( art. 124581), 1-4. doi:10.1016/j.jmaa.2020.124581
    • NLM

      Causey RM, Galego EM, Samuel C. On injective tensor powers of ℓ1 [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( art. 124581): 1-4.Available from: https://doi.org/10.1016/j.jmaa.2020.124581
    • Vancouver

      Causey RM, Galego EM, Samuel C. On injective tensor powers of ℓ1 [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 494( art. 124581): 1-4.Available from: https://doi.org/10.1016/j.jmaa.2020.124581
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES INTEGRAIS LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Marcone Corrêa; SASTRE-GOMEZ, Silvia. Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, New York, v. 495, n. 2, p. 1-21, 2021. Disponível em: < https://doi.org/10.1016/j.jmaa.2020.124729 > DOI: 10.1016/j.jmaa.2020.124729.
    • APA

      Pereira, M. C., & Sastre-Gomez, S. (2021). Nonlocal and nonlinear evolution equations in perforated domains. Journal of Mathematical Analysis and Applications, 495( 2), 1-21. doi:10.1016/j.jmaa.2020.124729
    • NLM

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.Available from: https://doi.org/10.1016/j.jmaa.2020.124729
    • Vancouver

      Pereira MC, Sastre-Gomez S. Nonlocal and nonlinear evolution equations in perforated domains [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-21.Available from: https://doi.org/10.1016/j.jmaa.2020.124729
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS NÃO LINEARES, EQUAÇÕES DA ONDA, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás; CARVALHO, Alexandre Nolasco de; LANGA, José Antonio; OLIVEIRA-SOUSA, Alexandre do Nascimento. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, San Diego, v. 500, n. 2, p. 1-27, 2021. Disponível em: < https://doi.org/10.1016/j.jmaa.2021.125134 > DOI: 10.1016/j.jmaa.2021.125134.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2021). The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations. Journal of Mathematical Analysis and Applications, 500( 2), 1-27. doi:10.1016/j.jmaa.2021.125134
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.Available from: https://doi.org/10.1016/j.jmaa.2021.125134
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. The effect of a small bounded noise on the hyperbolicity for autonomous semilinear differential equations [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 500( 2): 1-27.Available from: https://doi.org/10.1016/j.jmaa.2021.125134
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS HIPERBÓLICOS, VALORES PRÓPRIOS, VARIEDADES MÍNIMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Adriano Cavalcante; MANFIO, Fernando. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, San Diego, v. 495, n. 2, p. 1-10, 2021. Disponível em: < https://doi.org/10.1016/j.jmaa.2020.124759 > DOI: 10.1016/j.jmaa.2020.124759.
    • APA

      Bezerra, A. C., & Manfio, F. (2021). Rigidity and stability estimates for minimal submanifolds in the hyperbolic space. Journal of Mathematical Analysis and Applications, 495( 2), 1-10. doi:10.1016/j.jmaa.2020.124759
    • NLM

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.Available from: https://doi.org/10.1016/j.jmaa.2020.124759
    • Vancouver

      Bezerra AC, Manfio F. Rigidity and stability estimates for minimal submanifolds in the hyperbolic space [Internet]. Journal of Mathematical Analysis and Applications. 2021 ; 495( 2): 1-10.Available from: https://doi.org/10.1016/j.jmaa.2020.124759
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, SÉRIES DE FOURIER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Paulo Leandro Dattori da; GONZALEZ, Rafael Borro; SILVA, Marcio A. Jorge. Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, San Diego, v. 492, n. 2, p. 1-36, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2020.124467 > DOI: 10.1016/j.jmaa.2020.124467.
    • APA

      Silva, P. L. D. da, Gonzalez, R. B., & Silva, M. A. J. (2020). Solvability for perturbations of a class of real vector fields on the two-torus. Journal of Mathematical Analysis and Applications, 492( 2), 1-36. doi:10.1016/j.jmaa.2020.124467
    • NLM

      Silva PLD da, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.Available from: https://doi.org/10.1016/j.jmaa.2020.124467
    • Vancouver

      Silva PLD da, Gonzalez RB, Silva MAJ. Solvability for perturbations of a class of real vector fields on the two-torus [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 492( 2): 1-36.Available from: https://doi.org/10.1016/j.jmaa.2020.124467
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: VARIEDADES COMPLEXAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOI, Andrea; MOSSA, Roberto; ZUDDAS, Fabio. Finite TYCZ expansions and cscK metrics. Journal of Mathematical Analysis and Applications, New York, v. 484, n. 1, p. 1-20, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2019.123715 > DOI: 10.1016/j.jmaa.2019.123715.
    • APA

      Loi, A., Mossa, R., & Zuddas, F. (2020). Finite TYCZ expansions and cscK metrics. Journal of Mathematical Analysis and Applications, 484( 1), 1-20. doi:10.1016/j.jmaa.2019.123715
    • NLM

      Loi A, Mossa R, Zuddas F. Finite TYCZ expansions and cscK metrics [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 1): 1-20.Available from: https://doi.org/10.1016/j.jmaa.2019.123715
    • Vancouver

      Loi A, Mossa R, Zuddas F. Finite TYCZ expansions and cscK metrics [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 1): 1-20.Available from: https://doi.org/10.1016/j.jmaa.2019.123715
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: PROBLEMAS DE VALORES INICIAIS, ESPAÇOS DE FRECHET, OPERADORES LINEARES, OPERADORES PSEUDODIFERENCIAIS, ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis; SILVA, Alex Pereira da. Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, San Diego, v. 484, n. 2, p. 1-15, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2019.123612 > DOI: 10.1016/j.jmaa.2019.123612.
    • APA

      Aragão-Costa, É. R., & Silva, A. P. da. (2020). Strongly compatible generators of groups on Fréchet spaces. Journal of Mathematical Analysis and Applications, 484( 2), 1-15. doi:10.1016/j.jmaa.2019.123612
    • NLM

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2019.123612
    • Vancouver

      Aragão-Costa ÉR, Silva AP da. Strongly compatible generators of groups on Fréchet spaces [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; 484( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2019.123612
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA DAS SINGULARIDADES, SIMETRIA, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAPTISTELLI, Patrícia Hernandes; LABOURIAU, Isabel Salgado; MANOEL, Miriam Garcia. Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, San Diego, v. No 2020, n. 2, p. 1-15, 2020. Disponível em: < https://doi.org/10.1016/j.jmaa.2020.124348 > DOI: 10.1016/j.jmaa.2020.124348.
    • APA

      Baptistelli, P. H., Labouriau, I. S., & Manoel, M. G. (2020). Recognition of symmetries in reversible maps. Journal of Mathematical Analysis and Applications, No 2020( 2), 1-15. doi:10.1016/j.jmaa.2020.124348
    • NLM

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2020.124348
    • Vancouver

      Baptistelli PH, Labouriau IS, Manoel MG. Recognition of symmetries in reversible maps [Internet]. Journal of Mathematical Analysis and Applications. 2020 ; No 2020( 2): 1-15.Available from: https://doi.org/10.1016/j.jmaa.2020.124348
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURCIA, Edwin Gonzalo; SICILIANO, Gaetano. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, New York, v. 474, n. 1, p. 544-571, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.01.063 > DOI: 10.1016/j.jmaa.2019.01.063.
    • APA

      Murcia, E. G., & Siciliano, G. (2019). Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity. Journal of Mathematical Analysis and Applications, 474( 1), 544-571. doi:10.1016/j.jmaa.2019.01.063
    • NLM

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.01.063
    • Vancouver

      Murcia EG, Siciliano G. Least energy radial sign-changing solution for the Schrödinger–Poisson system in R3 under an asymptotically cubic nonlinearity [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 474( 1): 544-571.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.01.063
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: MÉTODOS VARIACIONAIS, OPERADORES ELÍTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARCOYA, David; PAIVA, Francisco Odair de; MENDOZA, Jose Miguel. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, San Diego, v. 480, n. 2, p. 1-12, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123401 > DOI: 10.1016/j.jmaa.2019.123401.
    • APA

      Arcoya, D., Paiva, F. O. de, & Mendoza, J. M. (2019). Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation. Journal of Mathematical Analysis and Applications, 480( 2), 1-12. doi:10.1016/j.jmaa.2019.123401
    • NLM

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
    • Vancouver

      Arcoya D, Paiva FO de, Mendoza JM. Existence of solutions for a nonhomogeneous elliptic Kircchoff type equation [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-12.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123401
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia. On the standing waves of the NLS-log equation with a point interaction on a star graph. Journal of Mathematical Analysis and Applications, New York, v. 473, n. 1, p. 53-70, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.12.019 > DOI: 10.1016/j.jmaa.2018.12.019.
    • APA

      Goloshchapova, N. (2019). On the standing waves of the NLS-log equation with a point interaction on a star graph. Journal of Mathematical Analysis and Applications, 473( 1), 53-70. doi:10.1016/j.jmaa.2018.12.019
    • NLM

      Goloshchapova N. On the standing waves of the NLS-log equation with a point interaction on a star graph [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 473( 1): 53-70.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.12.019
    • Vancouver

      Goloshchapova N. On the standing waves of the NLS-log equation with a point interaction on a star graph [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 473( 1): 53-70.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.12.019
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES NÃO LINEARES, MÉTODOS TOPOLÓGICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS JR., J.R.; SICILIANO, Gaetano. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, New York, v. 480, n. 2, p. 1-19, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123394 > DOI: 10.1016/j.jmaa.2019.123394.
    • APA

      Santos Jr., J. R., & Siciliano, G. (2019). On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities. Journal of Mathematical Analysis and Applications, 480( 2), 1-19. doi:10.1016/j.jmaa.2019.123394
    • NLM

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123394
    • Vancouver

      Santos Jr. JR, Siciliano G. On a generalized Timoshenko-Kirchhoff equation with sublinear nonlinearities [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480( 2): 1-19.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123394
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEOREMAS LIMITES, CADEIAS DE MARKOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GREJO, Carolina Bueno; RODRÍGUEZ, Pablo Martín. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, Maryland Heights, v. 480, p. 1-10, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2019.123402 > DOI: 10.1016/j.jmaa.2019.123402.
    • APA

      Grejo, C. B., & Rodríguez, P. M. (2019). Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions. Journal of Mathematical Analysis and Applications, 480, 1-10. doi:10.1016/j.jmaa.2019.123402
    • NLM

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
    • Vancouver

      Grejo CB, Rodríguez PM. Asymptotic behavior for a modified Maki-Thompson model with directed inter-group interactions [Internet]. Journal of Mathematical Analysis and Applications. 2019 ; 480 1-10.Available from: http://dx.doi.org/10.1016/j.jmaa.2019.123402
  • Source: Journal of Mathematical Analysis and Applications. Unidade: FFCLRP

    Subjects: OPERADORES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAYART, Frédéric; DARJI, Udayan B.; PIRES, Benito Frazão. Topological transitivity and mixing of composition operators. Journal of Mathematical Analysis and Applications, New York, v. 465, n. 1, p. 125-139, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.04.063 > DOI: 10.1016/j.jmaa.2018.04.063.
    • APA

      Bayart, F., Darji, U. B., & Pires, B. F. (2018). Topological transitivity and mixing of composition operators. Journal of Mathematical Analysis and Applications, 465( 1), 125-139. doi:10.1016/j.jmaa.2018.04.063
    • NLM

      Bayart F, Darji UB, Pires BF. Topological transitivity and mixing of composition operators [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 125-139.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.063
    • Vancouver

      Bayart F, Darji UB, Pires BF. Topological transitivity and mixing of composition operators [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 125-139.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.063
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Pedro Tavares Paes; PEREIRA, Marcone Corrêa. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, Maryland Heights, v. 465, n. 1, p. 379-402, 2018. Disponível em: < https://doi.org/10.1016/j.jmaa.2018.05.015 > DOI: 10.1016/j.jmaa.2018.05.015.
    • APA

      Lopes, P. T. P., & Pereira, M. C. (2018). Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation. Journal of Mathematical Analysis and Applications, 465( 1), 379-402. doi:10.1016/j.jmaa.2018.05.015
    • NLM

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
    • Vancouver

      Lopes PTP, Pereira MC. Dynamical boundary conditions in a non-cylindrical domain for the Laplace equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 379-402.Available from: https://doi.org/10.1016/j.jmaa.2018.05.015
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERNANDES, Wilker; OLIVEIRA, Regilene Delazari dos Santos; ROMANOVSKI, Valery G. Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, San Diego, v. No 2018, n. 2, p. 874-892, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.07.053 > DOI: 10.1016/j.jmaa.2018.07.053.
    • APA

      Fernandes, W., Oliveira, R. D. dos S., & Romanovski, V. G. (2018). Isochronicity of a 'Z IND.2'-equivariant quintic system. Journal of Mathematical Analysis and Applications, No 2018( 2), 874-892. doi:10.1016/j.jmaa.2018.07.053
    • NLM

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
    • Vancouver

      Fernandes W, Oliveira RD dos S, Romanovski VG. Isochronicity of a 'Z IND.2'-equivariant quintic system [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; No 2018( 2): 874-892.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.07.053
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ÁLGEBRAS DE OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CELY, Liliana; GALEGO, Eloi Medina; GONZÁLEZ, Manuel. Convolution operators on group algebras which are tauberian or cotauberian. Journal of Mathematical Analysis and Applications, New York, v. 465, n. 1, p. 309-317, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.05.007 > DOI: 10.1016/j.jmaa.2018.05.007.
    • APA

      Cely, L., Galego, E. M., & González, M. (2018). Convolution operators on group algebras which are tauberian or cotauberian. Journal of Mathematical Analysis and Applications, 465( 1), 309-317. doi:10.1016/j.jmaa.2018.05.007
    • NLM

      Cely L, Galego EM, González M. Convolution operators on group algebras which are tauberian or cotauberian [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 309-317.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.007
    • Vancouver

      Cely L, Galego EM, González M. Convolution operators on group algebras which are tauberian or cotauberian [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): 309-317.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.05.007
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, EQUAÇÃO DE SCHRODINGER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank D. M; CARVALHO, Alexandre Nolasco de; DLOTKO, Tomasz; NASCIMENTO, Marcelo J. D. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, San Diego, v. 457, n. Ja 2018, p. 336-360, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2017.08.014 > DOI: 10.1016/j.jmaa.2017.08.014.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.Available from: http://dx.doi.org/10.1016/j.jmaa.2017.08.014
  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Assunto: ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCON-VILLAMIZAR, Michael A. On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, New York, v. 467, n. 2, p. 1287-1296, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.08.003 > DOI: 10.1016/j.jmaa.2018.08.003.
    • APA

      Galego, E. M., & Rincon-Villamizar, M. A. (2018). On positive embeddings of C(K) spaces into C(S,X) lattices. Journal of Mathematical Analysis and Applications, 467( 2), 1287-1296. doi:10.1016/j.jmaa.2018.08.003
    • NLM

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.08.003
    • Vancouver

      Galego EM, Rincon-Villamizar MA. On positive embeddings of C(K) spaces into C(S,X) lattices [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 467( 2): 1287-1296.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.08.003
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: ESPAÇOS DE BESOV, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, San Diego, v. 465, n. 1, p. Se 2018, 2018. Disponível em: < http://dx.doi.org/10.1016/j.jmaa.2018.04.077 > DOI: 10.1016/j.jmaa.2018.04.077.
    • APA

      Silva, E. R. da. (2018). Local solvability for a class of linear operators in Besov and Hölder spaces. Journal of Mathematical Analysis and Applications, 465( 1), Se 2018. doi:10.1016/j.jmaa.2018.04.077
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Besov and Hölder spaces [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 465( 1): Se 2018.Available from: http://dx.doi.org/10.1016/j.jmaa.2018.04.077

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021