Filters : "Journal of Lie Theory" Limpar

Filters



Refine with date range


  • Source: Journal of Lie Theory. Unidade: ICMC

    Subjects: TEORIA GEOMÉTRICA DOS GRUPOS, GRUPOS TOPOLÓGICOS, GRUPOS DE LIE

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KIZIL, Eyup; LAWSON, Jimmie. Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory, Lemgo, Heldermann Verlag, v. 25, n. 3, p. 753-774, 2015.
    • APA

      Kizil, E., & Lawson, J. (2015). Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory, 25( 3), 753-774.
    • NLM

      Kizil E, Lawson J. Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory. 2015 ; 25( 3): 753-774.
    • Vancouver

      Kizil E, Lawson J. Lie semigroups, homotopy, and global extensions of local homomorphisms. Journal of Lie Theory. 2015 ; 25( 3): 753-774.
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: GRUPOS DE LIE

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANTONELI, Fernando; FORGER, Frank Michael; KASSAMA, Paola Andrea Gaviria. Maximal subgroups of compact Lie groups. Journal of Lie Theory, Lemgo, Heldermann, v. 22, n. 4, p. 949-1024, 2012. Disponível em: < http://www.heldermann.de/JLT/JLT22/JLT224/jlt22043.htm >.
    • APA

      Antoneli, F., Forger, F. M., & Kassama, P. A. G. (2012). Maximal subgroups of compact Lie groups. Journal of Lie Theory, 22( 4), 949-1024. Recuperado de http://www.heldermann.de/JLT/JLT22/JLT224/jlt22043.htm
    • NLM

      Antoneli F, Forger FM, Kassama PAG. Maximal subgroups of compact Lie groups. [Internet]. Journal of Lie Theory. 2012 ; 22( 4): 949-1024.Available from: http://www.heldermann.de/JLT/JLT22/JLT224/jlt22043.htm
    • Vancouver

      Antoneli F, Forger FM, Kassama PAG. Maximal subgroups of compact Lie groups. [Internet]. Journal of Lie Theory. 2012 ; 22( 4): 949-1024.Available from: http://www.heldermann.de/JLT/JLT22/JLT224/jlt22043.htm
  • Source: Journal of Lie Theory. Unidade: IME

    Subjects: GRUPOS DE LIE

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio; PODESTÀ, Fabio. Homogeneity rank of real representations of compact Lie groups. Journal of Lie Theory, Lemgo, The Electronic Library of Mathematics, v. 15, n. 1, p. 63-77, 2005. Disponível em: < https://www-emis-de.ez67.periodicos.capes.gov.br/journals/JLT/vol.15_no.1/gorodla2e.pdf >.
    • APA

      Gorodski, C., & Podestà, F. (2005). Homogeneity rank of real representations of compact Lie groups. Journal of Lie Theory, 15( 1), 63-77. Recuperado de https://www-emis-de.ez67.periodicos.capes.gov.br/journals/JLT/vol.15_no.1/gorodla2e.pdf
    • NLM

      Gorodski C, Podestà F. Homogeneity rank of real representations of compact Lie groups [Internet]. Journal of Lie Theory. 2005 ; 15( 1): 63-77.Available from: https://www-emis-de.ez67.periodicos.capes.gov.br/journals/JLT/vol.15_no.1/gorodla2e.pdf
    • Vancouver

      Gorodski C, Podestà F. Homogeneity rank of real representations of compact Lie groups [Internet]. Journal of Lie Theory. 2005 ; 15( 1): 63-77.Available from: https://www-emis-de.ez67.periodicos.capes.gov.br/journals/JLT/vol.15_no.1/gorodla2e.pdf


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020