Filtros : "Journal of Dynamics and Differential Equations" Limpar

Filtros



Refine with date range


  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: TEORIA ESPECTRAL, TOPOLOGIA ALGÉBRICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi; CALAMAI, Alessandro; FURI, Massimo; PERA, Maria Patrizia. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations, New York, 2021. Disponível em: < https://doi.org/10.1007/s10884-020-09921-9 > DOI: 10.1007/s10884-020-09921-9.
    • APA

      Benevieri, P., Calamai, A., Furi, M., & Pera, M. P. (2021). A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-020-09921-9
    • NLM

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2021 ;Available from: https://doi.org/10.1007/s10884-020-09921-9
    • Vancouver

      Benevieri P, Calamai A, Furi M, Pera MP. A degree associated to linear eigenvalue problems in Hilbert spaces and applications to nonlinear spectral theory [Internet]. Journal of Dynamics and Differential Equations. 2021 ;Available from: https://doi.org/10.1007/s10884-020-09921-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; BORTOLAN, Matheus Cheque; CARABALLO, Tomás; COLLEGARI, Rodolfo. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, New York, v. 33, p. 463-487, 2021. Disponível em: < https://doi.org/10.1007/s10884-019-09815-5 > DOI: 10.1007/s10884-019-09815-5.
    • APA

      Bonotto, E. de M., Bortolan, M. C., Caraballo, T., & Collegari, R. (2021). Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems. Journal of Dynamics and Differential Equations, 33, 463-487. doi:10.1007/s10884-019-09815-5
    • NLM

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.Available from: https://doi.org/10.1007/s10884-019-09815-5
    • Vancouver

      Bonotto E de M, Bortolan MC, Caraballo T, Collegari R. Upper and lower semicontinuity of impulsive cocycle attractors for impulsive nonautonomous systems [Internet]. Journal of Dynamics and Differential Equations. 2021 ; 33 463-487.Available from: https://doi.org/10.1007/s10884-019-09815-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: ATRATORES, ELASTICIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOCANEGRA-RODRÍGUEZ, Lito Edinson; SILVA, Marcio Antonio Jorge da; MA, To Fu; SEMINARIO-HUERTAS, Paulo Nicanor. Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations, New York, 2021. Disponível em: < https://doi.org/10.1007/s10884-021-09955-7 > DOI: 10.1007/s10884-021-09955-7.
    • APA

      Bocanegra-Rodríguez, L. E., Silva, M. A. J. da, Ma, T. F., & Seminario-Huertas, P. N. (2021). Longtime dynamics of a semilinear Lamé System. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-021-09955-7
    • NLM

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2021 ;Available from: https://doi.org/10.1007/s10884-021-09955-7
    • Vancouver

      Bocanegra-Rodríguez LE, Silva MAJ da, Ma TF, Seminario-Huertas PN. Longtime dynamics of a semilinear Lamé System [Internet]. Journal of Dynamics and Differential Equations. 2021 ;Available from: https://doi.org/10.1007/s10884-021-09955-7
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DIMENSÃO INFINITA, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz; SOLA-MORALES, Joan. A new example on Lyapunov stability. Journal of Dynamics and Differential Equations, New York, 2021. Disponível em: < https://doi.org/10.1007/s10884-021-09962-8 > DOI: 0.1007/s10884-021-09962-8.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2021). A new example on Lyapunov stability. Journal of Dynamics and Differential Equations. doi:0.1007/s10884-021-09962-8
    • NLM

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2021 ;Available from: https://doi.org/10.1007/s10884-021-09962-8
    • Vancouver

      Rodrigues HM, Sola-Morales J. A new example on Lyapunov stability [Internet]. Journal of Dynamics and Differential Equations. 2021 ;Available from: https://doi.org/10.1007/s10884-021-09962-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARTÉS, Joan C; OLIVEIRA, Regilene Delazari dos Santos; REZENDE, Alex Carlucci. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations, New York, 2020. Disponível em: < https://doi.org/10.1007/s10884-020-09871-2 > DOI: 10.1007/s10884-020-09871-2.
    • APA

      Artés, J. C., Oliveira, R. D. dos S., & Rezende, A. C. (2020). Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes. Journal of Dynamics and Differential Equations. doi:10.1007/s10884-020-09871-2
    • NLM

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09871-2
    • Vancouver

      Artés JC, Oliveira RD dos S, Rezende AC. Structurally unstable quadratic vector fields of codimension two: families possessing either a cusp point or two finite saddle-nodes [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09871-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS FUNCIONAIS COM RETARDAMENTO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; GYÖRI, I; MESQUITA, Jaqueline Godoy; TABOAS, Placido Zoega. A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, New York, v. 32, n. 2, p. 605-614, 2020. Disponível em: < http://dx.doi.org/10.1007/s10884-019-09750-5 > DOI: 10.1007/s10884-019-09750-5.
    • APA

      Federson, M. C. A. B., Györi, I., Mesquita, J. G., & Taboas, P. Z. (2020). A delay differential equation with an impulsive self-support condition. Journal of Dynamics and Differential Equations, 32( 2), 605-614. doi:10.1007/s10884-019-09750-5
    • NLM

      Federson MCAB, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.Available from: http://dx.doi.org/10.1007/s10884-019-09750-5
    • Vancouver

      Federson MCAB, Györi I, Mesquita JG, Taboas PZ. A delay differential equation with an impulsive self-support condition [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 2): 605-614.Available from: http://dx.doi.org/10.1007/s10884-019-09750-5
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ROBUSTEZ, DIMENSÃO INFINITA

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz; NAKASSIMA, Guilherme Kenji; CARABALLO, Tomás. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations, New York, 2020. Disponível em: < https://doi.org/10.1007/s10884-020-09854-3 >.
    • APA

      Rodrigues, H. M., Nakassima, G. K., & Caraballo, T. (2020). Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces. Journal of Dynamics and Differential Equations. Recuperado de https://doi.org/10.1007/s10884-020-09854-3
    • NLM

      Rodrigues HM, Nakassima GK, Caraballo T. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09854-3
    • Vancouver

      Rodrigues HM, Nakassima GK, Caraballo T. Robustness of exponential dichotomy in a class of generalised almost periodic linear differential equations in infinite dimensional Banach spaces [Internet]. Journal of Dynamics and Differential Equations. 2020 ;Available from: https://doi.org/10.1007/s10884-020-09854-3
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS NÃO LINEARES, MECÂNICA DOS SÓLIDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, Eduardo Henrique Gomes; SILVA, Marcio A. Jorge; NARCISO, Vando. Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, New York, v. 32, n. 3, p. Se 2020, 2020. Disponível em: < https://doi.org/10.1007/s10884-019-09766-x > DOI: 10.1007/s10884-019-09766-x.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Narciso, V. (2020). Long-time dynamics of Balakrishnan-Taylor extensible beams. Journal of Dynamics and Differential Equations, 32( 3), Se 2020. doi:10.1007/s10884-019-09766-x
    • NLM

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.Available from: https://doi.org/10.1007/s10884-019-09766-x
    • Vancouver

      Tavares EHG, Silva MAJ, Narciso V. Long-time dynamics of Balakrishnan-Taylor extensible beams [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 3): Se 2020.Available from: https://doi.org/10.1007/s10884-019-09766-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAPPICY, Phillipo. Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, New York, v. 32, n. 1, p. 359-390, 2020. Disponível em: < https://doi.org/10.1007/s10884-019-09728-3 > DOI: 10.1007/s10884-019-09728-3.
    • APA

      Lappicy, P. (2020). Sturm attractors for quasilinear parabolic equations with singular coefficients. Journal of Dynamics and Differential Equations, 32( 1), 359-390. doi:10.1007/s10884-019-09728-3
    • NLM

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.Available from: https://doi.org/10.1007/s10884-019-09728-3
    • Vancouver

      Lappicy P. Sturm attractors for quasilinear parabolic equations with singular coefficients [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32( 1): 359-390.Available from: https://doi.org/10.1007/s10884-019-09728-3
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE SISTEMAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; FEDERSON, Márcia Cristina Anderson Braz; SANTOS, Fabio L. Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, New York, v. 32, p. 2021-2060, 2020. Disponível em: < https://doi.org/10.1007/s10884-019-09801-x > DOI: 10.1007/s10884-019-09801-x.
    • APA

      Bonotto, E. de M., Federson, M. C. A. B., & Santos, F. L. (2020). Robustness of exponential dichotomies for generalized ordinary differential equations. Journal of Dynamics and Differential Equations, 32, 2021-2060. doi:10.1007/s10884-019-09801-x
    • NLM

      Bonotto E de M, Federson MCAB, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.Available from: https://doi.org/10.1007/s10884-019-09801-x
    • Vancouver

      Bonotto E de M, Federson MCAB, Santos FL. Robustness of exponential dichotomies for generalized ordinary differential equations [Internet]. Journal of Dynamics and Differential Equations. 2020 ; 32 2021-2060.Available from: https://doi.org/10.1007/s10884-019-09801-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, FUNÇÕES DE UMA VARIÁVEL COMPLEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; FRASSON, Miguel Vinicius Santini; MESQUITA, Jaqueline Godoy; TACURI, Patricia Hilario. Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, New York, v. 31, n. 1, p. 207-236, 2019. Disponível em: < http://dx.doi.org/10.1007/s10884-018-9682-y > DOI: 10.1007/s10884-018-9682-y.
    • APA

      Federson, M. C. A. B., Frasson, M. V. S., Mesquita, J. G., & Tacuri, P. H. (2019). Measure neutral functional differential equations as generalized ODEs. Journal of Dynamics and Differential Equations, 31( 1), 207-236. doi:10.1007/s10884-018-9682-y
    • NLM

      Federson MCAB, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.Available from: http://dx.doi.org/10.1007/s10884-018-9682-y
    • Vancouver

      Federson MCAB, Frasson MVS, Mesquita JG, Tacuri PH. Measure neutral functional differential equations as generalized ODEs [Internet]. Journal of Dynamics and Differential Equations. 2019 ; 31( 1): 207-236.Available from: http://dx.doi.org/10.1007/s10884-018-9682-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENG, B; MA, To Fu; MONTEIRO, R. N; RAPOSO, C. A. Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, New York, v. 30, n. 4, p. 1489-1507, 2018. Disponível em: < http://dx.doi.org/10.1007/s10884-017-9604-4 > DOI: 10.1007/s10884-017-9604-4.
    • APA

      Feng, B., Ma, T. F., Monteiro, R. N., & Raposo, C. A. (2018). Dynamics of laminated Timoshenko beams. Journal of Dynamics and Differential Equations, 30( 4), 1489-1507. doi:10.1007/s10884-017-9604-4
    • NLM

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.Available from: http://dx.doi.org/10.1007/s10884-017-9604-4
    • Vancouver

      Feng B, Ma TF, Monteiro RN, Raposo CA. Dynamics of laminated Timoshenko beams [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1489-1507.Available from: http://dx.doi.org/10.1007/s10884-017-9604-4
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz; TEIXEIRA, Marco A.; GAMEIRO, Márcio Fuzeto. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, New York, v. 30, n. 3, p. 1199-1219, 2018. Disponível em: < http://dx.doi.org/10.1007/s10884-017-9598-y > DOI: 10.1007/s10884-017-9598-y.
    • APA

      Rodrigues, H. M., Teixeira, M. A., & Gameiro, M. F. (2018). On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system. Journal of Dynamics and Differential Equations, 30( 3), 1199-1219. doi:10.1007/s10884-017-9598-y
    • NLM

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.Available from: http://dx.doi.org/10.1007/s10884-017-9598-y
    • Vancouver

      Rodrigues HM, Teixeira MA, Gameiro MF. On exponential decay and the Markus–Yamabe conjecture in infinite dimensions with applications to the Cima system [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 3): 1199-1219.Available from: http://dx.doi.org/10.1007/s10884-017-9598-y
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, ESPAÇOS DE BANACH

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Ritis; FIGUEROA-LÓPEZ, R. N; LANGA, J. A; LOZADA-CRUZ, G. Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, New York, v. 30, n. 2, p. 687-718, 2018. Disponível em: < http://dx.doi.org/10.1007/s10884-016-9567-x > DOI: 10.1007/s10884-016-9567-x.
    • APA

      Aragão-Costa, É. R., Figueroa-López, R. N., Langa, J. A., & Lozada-Cruz, G. (2018). Topological structural stability of partial differential equations on projected spaces. Journal of Dynamics and Differential Equations, 30( 2), 687-718. doi:10.1007/s10884-016-9567-x
    • NLM

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.Available from: http://dx.doi.org/10.1007/s10884-016-9567-x
    • Vancouver

      Aragão-Costa ÉR, Figueroa-López RN, Langa JA, Lozada-Cruz G. Topological structural stability of partial differential equations on projected spaces [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 2): 687-718.Available from: http://dx.doi.org/10.1007/s10884-016-9567-x
  • Source: Journal of Dynamics and Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS DA FÍSICA, SISTEMAS DINÂMICOS (FÍSICA MATEMÁTICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de; CARDOSO, João Lopes; TONON, Durval José. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, New York, v. 30, n. 4, p. 1899-1920, 2018. Disponível em: < http://dx.doi.org/10.1007/s10884-017-9636-9 > DOI: 10.1007/s10884-017-9636-9.
    • APA

      Carvalho, T. de, Cardoso, J. L., & Tonon, D. J. (2018). Canonical forms for codimension one planar piecewise smooth vector fields with sliding region. Journal of Dynamics and Differential Equations, 30( 4), 1899-1920. doi:10.1007/s10884-017-9636-9
    • NLM

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.Available from: http://dx.doi.org/10.1007/s10884-017-9636-9
    • Vancouver

      Carvalho T de, Cardoso JL, Tonon DJ. Canonical forms for codimension one planar piecewise smooth vector fields with sliding region [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 4): 1899-1920.Available from: http://dx.doi.org/10.1007/s10884-017-9636-9
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, DINÂMICA UNIDIMENSIONAL, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRANDÃO, Daniel Smania; VIDARTE, José. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, New York, v. 30, n. 1, p. 227-255, 2018. Disponível em: < http://dx.doi.org/10.1007/s10884-016-9539-1 > DOI: 10.1007/s10884-016-9539-1.
    • APA

      Brandão, D. S., & Vidarte, J. (2018). Existence of 'C POT. K'-invariant foliations for Lorenz-type maps. Journal of Dynamics and Differential Equations, 30( 1), 227-255. doi:10.1007/s10884-016-9539-1
    • NLM

      Brandão DS, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.Available from: http://dx.doi.org/10.1007/s10884-016-9539-1
    • Vancouver

      Brandão DS, Vidarte J. Existence of 'C POT. K'-invariant foliations for Lorenz-type maps [Internet]. Journal of Dynamics and Differential Equations. 2018 ; 30( 1): 227-255.Available from: http://dx.doi.org/10.1007/s10884-016-9539-1
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUKARIC, Masa; OLIVEIRA, Regilene Delazari dos Santos; ROMANOVSKI, Valery G. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, New York, v. 29, n. Ju 2017, p. 597-613, 2017. Disponível em: < http://dx.doi.org/10.1007/s10884-015-9486-2 > DOI: 10.1007/s10884-015-9486-2.
    • APA

      Dukaric, M., Oliveira, R. D. dos S., & Romanovski, V. G. (2017). Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system. Journal of Dynamics and Differential Equations, 29( Ju 2017), 597-613. doi:10.1007/s10884-015-9486-2
    • NLM

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.Available from: http://dx.doi.org/10.1007/s10884-015-9486-2
    • Vancouver

      Dukaric M, Oliveira RD dos S, Romanovski VG. Local integrability and linearizability of a (1 : -1 : -1) resonant quadratic system [Internet]. Journal of Dynamics and Differential Equations. 2017 ; 29( Ju 2017): 597-613.Available from: http://dx.doi.org/10.1007/s10884-015-9486-2
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS, TEORIA DA BIFURCAÇÃO, SOLUÇÕES PERIÓDICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FIEDLER, Bernold; OLIVA, Sérgio Muniz. Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, New York, v. 28, n. 3/4, p. 1357–1391, 2016. Disponível em: < http://dx.doi.org/10.1007/s10884-015-9456-8 > DOI: 10.1007/s10884-015-9456-8.
    • APA

      Fiedler, B., & Oliva, S. M. (2016). Delayed feedback control of a delay equation at Hopf bifurcation. Journal of Dynamics and Differential Equations, 28( 3/4), 1357–1391. doi:10.1007/s10884-015-9456-8
    • NLM

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.Available from: http://dx.doi.org/10.1007/s10884-015-9456-8
    • Vancouver

      Fiedler B, Oliva SM. Delayed feedback control of a delay equation at Hopf bifurcation [Internet]. Journal of Dynamics and Differential Equations. 2016 ; 28( 3/4): 1357–1391.Available from: http://dx.doi.org/10.1007/s10884-015-9456-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO, Gleiciane da Silva; PEREIRA, Antônio Luiz; PEREIRA, Marcone Corrêa. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, New York, v. 26, n. 4, p. 871-888, 2014. Disponível em: < http://dx.doi.org/10.1007/s10884-014-9412-z > DOI: 10.1007/s10884-014-9412-z.
    • APA

      Aragão, G. da S., Pereira, A. L., & Pereira, M. C. (2014). Attractors for a nonlinear parabolic problem with terms concentrating on the boundary. Journal of Dynamics and Differential Equations, 26( 4), 871-888. doi:10.1007/s10884-014-9412-z
    • NLM

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.Available from: http://dx.doi.org/10.1007/s10884-014-9412-z
    • Vancouver

      Aragão G da S, Pereira AL, Pereira MC. Attractors for a nonlinear parabolic problem with terms concentrating on the boundary [Internet]. Journal of Dynamics and Differential Equations. 2014 ; 26( 4): 871-888.Available from: http://dx.doi.org/10.1007/s10884-014-9412-z
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M; CARVALHO, Alexandre Nolasco de; LANGA, José A; RODRIGUEZ-BERNAL, Aníbal. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, New York, v. 24, n. 3, p. 427-481, 2012. Disponível em: < http://dx.doi.org/10.1007/s10884-012-9269-y > DOI: 10.1007/s10884-012-9269-y.
    • APA

      Arrieta, J. M., Carvalho, A. N. de, Langa, J. A., & Rodriguez-Bernal, A. (2012). Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations. Journal of Dynamics and Differential Equations, 24( 3), 427-481. doi:10.1007/s10884-012-9269-y
    • NLM

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.Available from: http://dx.doi.org/10.1007/s10884-012-9269-y
    • Vancouver

      Arrieta JM, Carvalho AN de, Langa JA, Rodriguez-Bernal A. Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations [Internet]. Journal of Dynamics and Differential Equations. 2012 ; 24( 3): 427-481.Available from: http://dx.doi.org/10.1007/s10884-012-9269-y

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021