Filtros : "Journal of Differential Equations" Limpar

Filtros



Refine with date range


  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, INTEGRAL DE DENJOY, INTEGRAL DE PERRON, TEORIA ASSINTÓTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da; FEDERSON, Márcia Cristina Anderson Braz; TOON, Eduard. Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, San Diego, v. 307, n. Ja 2022, p. 160-210, 2022. Disponível em: < https://doi.org/10.1016/j.jde.2021.10.044 > DOI: 10.1016/j.jde.2021.10.044.
    • APA

      Silva, F. A. da, Federson, M. C. A. B., & Toon, E. (2022). Stability, boundedness and controllability of solutions of measure functional differential equations. Journal of Differential Equations, 307( Ja 2022), 160-210. doi:10.1016/j.jde.2021.10.044
    • NLM

      Silva FA da, Federson MCAB, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.Available from: https://doi.org/10.1016/j.jde.2021.10.044
    • Vancouver

      Silva FA da, Federson MCAB, Toon E. Stability, boundedness and controllability of solutions of measure functional differential equations [Internet]. Journal of Differential Equations. 2022 ; 307( Ja 2022): 160-210.Available from: https://doi.org/10.1016/j.jde.2021.10.044
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SIMETRIA, INVARIANTES, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Wendel Leite da; SANTOS, Ederson Moreira dos. Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, Maryland Heights, v. 287, p. 212-235, 2021. Disponível em: < https://doi.org/10.1016/j.jde.2021.03.050 > DOI: 10.1016/j.jde.2021.03.050.
    • APA

      Silva, W. L. da, & Santos, E. M. dos. (2021). Asymptotic profile and Morse index of the radial solutions of the Hénon equation. Journal of Differential Equations, 287, 212-235. doi:10.1016/j.jde.2021.03.050
    • NLM

      Silva WL da, Santos EM dos. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.Available from: https://doi.org/10.1016/j.jde.2021.03.050
    • Vancouver

      Silva WL da, Santos EM dos. Asymptotic profile and Morse index of the radial solutions of the Hénon equation [Internet]. Journal of Differential Equations. 2021 ; 287 212-235.Available from: https://doi.org/10.1016/j.jde.2021.03.050
  • Source: Journal of Differential Equations. Unidades: IME, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José María; NAKASATO, Jean Carlos; PEREIRA, Marcone Corrêa. The p-Laplacian equation in thin domains: The unfolding approach. Journal of Differential Equations, Amsterdam, v. 274, p. 1-34, 2021. Disponível em: < https://doi.org//10.1016/j.jde.2020.12.004 > DOI: /10.1016/j.jde.2020.12.004.
    • APA

      Arrieta, J. M., Nakasato, J. C., & Pereira, M. C. (2021). The p-Laplacian equation in thin domains: The unfolding approach. Journal of Differential Equations, 274, 1-34. doi:/10.1016/j.jde.2020.12.004
    • NLM

      Arrieta JM, Nakasato JC, Pereira MC. The p-Laplacian equation in thin domains: The unfolding approach [Internet]. Journal of Differential Equations. 2021 ; 274 1-34.Available from: https://doi.org//10.1016/j.jde.2020.12.004
    • Vancouver

      Arrieta JM, Nakasato JC, Pereira MC. The p-Laplacian equation in thin domains: The unfolding approach [Internet]. Journal of Differential Equations. 2021 ; 274 1-34.Available from: https://doi.org//10.1016/j.jde.2020.12.004
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da; FEDERSON, Márcia Cristina Anderson Braz; GRAU, Rogelio; TOON, Eduard. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, San Diego, v. 286, p. 1-46, 2021. Disponível em: < https://doi.org/10.1016/j.jde.2021.02.060 > DOI: 10.1016/j.jde.2021.02.060.
    • APA

      Silva, F. A. da, Federson, M. C. A. B., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson MCAB, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson MCAB, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, TEORIA DA BIFURCAÇÃO, ATRATORES, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de; MOREIRA, Estefani Moraes. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, San Diego, v. No 2021, p. 312-336, 2021. Disponível em: < https://doi.org/10.1016/j.jde.2021.07.044 > DOI: 10.1016/j.jde.2021.07.044.
    • APA

      Carvalho, A. N. de, & Moreira, E. M. (2021). Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem. Journal of Differential Equations, No 2021, 312-336. doi:10.1016/j.jde.2021.07.044
    • NLM

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.Available from: https://doi.org/10.1016/j.jde.2021.07.044
    • Vancouver

      Carvalho AN de, Moreira EM. Stability and hyperbolicity of equilibria for a scalar nonlocal one-dimensional quasilinear parabolic problem [Internet]. Journal of Differential Equations. 2021 ; No 2021 312-336.Available from: https://doi.org/10.1016/j.jde.2021.07.044
  • Source: Journal of Differential Equations. Unidades: FFCLRP, ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SEMIGRUPOS DE OPERADORES LINEARES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo; FERNANDES, Denis; WU, Jianhong. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, San Diego, v. No 2021, p. 753-806, 2021. Disponível em: < https://doi.org/10.1016/j.jde.2021.09.014 > DOI: 10.1016/j.jde.2021.09.014.
    • APA

      Hernandez, E., Fernandes, D., & Wu, J. (2021). Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay. Journal of Differential Equations, No 2021, 753-806. doi:10.1016/j.jde.2021.09.014
    • NLM

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.Available from: https://doi.org/10.1016/j.jde.2021.09.014
    • Vancouver

      Hernandez E, Fernandes D, Wu J. Existence and uniqueness of solutions, well-posedness and global attractor for abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2021 ; No 2021 753-806.Available from: https://doi.org/10.1016/j.jde.2021.09.014
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, OBSERVABILIDADE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BURIOL, Celene; DELATORRE, Leonel Giacomini; MARTINEZ, Victor Hugo Gonzalez; SOARES, Daiane Campara; TAVARES, Eduardo Henrique Gomes. Asymptotic stability for a generalized nonlinear Klein-Gordon system. Journal of Differential Equations, San Diego, v. 280, p. 517-545, 2021. Disponível em: < https://doi.org/10.1016/j.jde.2021.01.011 > DOI: 10.1016/j.jde.2021.01.011.
    • APA

      Buriol, C., Delatorre, L. G., Martinez, V. H. G., Soares, D. C., & Tavares, E. H. G. (2021). Asymptotic stability for a generalized nonlinear Klein-Gordon system. Journal of Differential Equations, 280, 517-545. doi:10.1016/j.jde.2021.01.011
    • NLM

      Buriol C, Delatorre LG, Martinez VHG, Soares DC, Tavares EHG. Asymptotic stability for a generalized nonlinear Klein-Gordon system [Internet]. Journal of Differential Equations. 2021 ; 280 517-545.Available from: https://doi.org/10.1016/j.jde.2021.01.011
    • Vancouver

      Buriol C, Delatorre LG, Martinez VHG, Soares DC, Tavares EHG. Asymptotic stability for a generalized nonlinear Klein-Gordon system [Internet]. Journal of Differential Equations. 2021 ; 280 517-545.Available from: https://doi.org/10.1016/j.jde.2021.01.011
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong; CARVALHO, Alexandre Nolasco de; CUNHA, Arthur Cavalcante; LANGA, José Antonio. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, San Diego, v. 285, p. 383-428, 2021. Disponível em: < https://doi.org/10.1016/j.jde.2021.03.013 > DOI: 10.1016/j.jde.2021.03.013.
    • APA

      Cui, H., Carvalho, A. N. de, Cunha, A. C., & Langa, J. A. (2021). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, 285, 383-428. doi:10.1016/j.jde.2021.03.013
    • NLM

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.Available from: https://doi.org/10.1016/j.jde.2021.03.013
    • Vancouver

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.Available from: https://doi.org/10.1016/j.jde.2021.03.013
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; FEDERSON, Márcia Cristina Anderson Braz; GADOTTI, Marta Cilene. Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, San Diego, v. 303, p. 123-155, 2021. Disponível em: < https://doi.org/10.1016/j.jde.2021.09.013 > DOI: 10.1016/j.jde.2021.09.013.
    • APA

      Bonotto, E. de M., Federson, M. C. A. B., & Gadotti, M. C. (2021). Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, 303, 123-155. doi:10.1016/j.jde.2021.09.013
    • NLM

      Bonotto E de M, Federson MCAB, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.Available from: https://doi.org/10.1016/j.jde.2021.09.013
    • Vancouver

      Bonotto E de M, Federson MCAB, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.Available from: https://doi.org/10.1016/j.jde.2021.09.013
  • Source: Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TEORIA DA BIFURCAÇÃO, ANÁLISE REAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi; MESQUITA, Jaqueline Godoy; PEREIRA, Aldo. Global bifurcation results for nonlinear dynamic equations on time scales. Journal of Differential Equations, Maryland Heights, v. 269, n. 12, p. 11252-11278, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.08.015 > DOI: 10.1016/j.jde.2020.08.015.
    • APA

      Benevieri, P., Mesquita, J. G., & Pereira, A. (2020). Global bifurcation results for nonlinear dynamic equations on time scales. Journal of Differential Equations, 269( 12), 11252-11278. doi:10.1016/j.jde.2020.08.015
    • NLM

      Benevieri P, Mesquita JG, Pereira A. Global bifurcation results for nonlinear dynamic equations on time scales [Internet]. Journal of Differential Equations. 2020 ; 269( 12): 11252-11278.Available from: https://doi.org/10.1016/j.jde.2020.08.015
    • Vancouver

      Benevieri P, Mesquita JG, Pereira A. Global bifurcation results for nonlinear dynamic equations on time scales [Internet]. Journal of Differential Equations. 2020 ; 269( 12): 11252-11278.Available from: https://doi.org/10.1016/j.jde.2020.08.015
  • Source: Journal of Differential Equations. Unidade: FFCLRP

    Subjects: CONTROLABILIDADE, PROBLEMA DE CAUCHY, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo; WU, Jianhong; CHADHA, Alka. Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay. Journal of Differential Equations, Maryland Heights, v. 269, n. 10, p. 8701-8735, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.06.030 > DOI: 10.1016/j.jde.2020.06.030.
    • APA

      Hernandez, E., Wu, J., & Chadha, A. (2020). Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay. Journal of Differential Equations, 269( 10), 8701-8735. doi:10.1016/j.jde.2020.06.030
    • NLM

      Hernandez E, Wu J, Chadha A. Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2020 ; 269( 10): 8701-8735.Available from: https://doi.org/10.1016/j.jde.2020.06.030
    • Vancouver

      Hernandez E, Wu J, Chadha A. Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2020 ; 269( 10): 8701-8735.Available from: https://doi.org/10.1016/j.jde.2020.06.030
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DISCRETOS, SISTEMAS DINÂMICOS, OPERADORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz; SOLA-MORALES, Joan. An example on Lyapunov stability and linearization. Journal of Differential Equations, Maryland Heights, v. 269, p. 1349-1359, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.01.027 > DOI: 10.1016/j.jde.2020.01.027.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2020). An example on Lyapunov stability and linearization. Journal of Differential Equations, 269, 1349-1359. doi:10.1016/j.jde.2020.01.027
    • NLM

      Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.Available from: https://doi.org/10.1016/j.jde.2020.01.027
    • Vancouver

      Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.Available from: https://doi.org/10.1016/j.jde.2020.01.027
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITURRIAGA, Leonelo; MASSA, Eugenio Tommaso. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems. Journal of Differential Equations, San Diego, v. 269, n. 5, p. 4381-4405, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.03.031 > DOI: 10.1016/j.jde.2020.03.031.
    • APA

      Iturriaga, L., & Massa, E. T. (2020). Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems. Journal of Differential Equations, 269( 5), 4381-4405. doi:10.1016/j.jde.2020.03.031
    • NLM

      Iturriaga L, Massa ET. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4381-4405.Available from: https://doi.org/10.1016/j.jde.2020.03.031
    • Vancouver

      Iturriaga L, Massa ET. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4381-4405.Available from: https://doi.org/10.1016/j.jde.2020.03.031
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: TOPOLOGIA DINÂMICA, TRANSVERSALIDADE, EQUAÇÕES DIFERENCIAIS PARCIAIS, INVARIANTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque; CARDOSO, Cesar Augusto Esteves das Neves; CARVALHO, Alexandre Nolasco de; PIRES, Leonardo. Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, San Diego, v. 269, n. 3, p. 1904-1943, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.01.024 > DOI: 10.1016/j.jde.2020.01.024.
    • APA

      Bortolan, M. C., Cardoso, C. A. E. das N., Carvalho, A. N. de, & Pires, L. (2020). Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, 269( 3), 1904-1943. doi:10.1016/j.jde.2020.01.024
    • NLM

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.Available from: https://doi.org/10.1016/j.jde.2020.01.024
    • Vancouver

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.Available from: https://doi.org/10.1016/j.jde.2020.01.024
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, SISTEMAS SOBREDETERMINADOS, SIMETRIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Ederson Moreira dos; NORNBERG, Gabrielle. Symmetry properties of positive solutions for fully nonlinear elliptic systems. Journal of Differential Equations, San Diego, v. 269, n. 5, p. 4175-4191, 2020. Disponível em: < https://doi.org/10.1016/j.jde.2020.03.023 > DOI: 10.1016/j.jde.2020.03.023.
    • APA

      Santos, E. M. dos, & Nornberg, G. (2020). Symmetry properties of positive solutions for fully nonlinear elliptic systems. Journal of Differential Equations, 269( 5), 4175-4191. doi:10.1016/j.jde.2020.03.023
    • NLM

      Santos EM dos, Nornberg G. Symmetry properties of positive solutions for fully nonlinear elliptic systems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4175-4191.Available from: https://doi.org/10.1016/j.jde.2020.03.023
    • Vancouver

      Santos EM dos, Nornberg G. Symmetry properties of positive solutions for fully nonlinear elliptic systems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4175-4191.Available from: https://doi.org/10.1016/j.jde.2020.03.023
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello; DEMUNER, D. P.; JIMENEZ, M. Z. Convergence for non-autonomous semidynamical systems with impulses. Journal of Differential Equations, Amsterdam, v. 266, n. Ja 2019, p. 227-256, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2018.07.035 > DOI: 10.1016/j.jde.2018.07.035.
    • APA

      Bonotto, E. de M., Demuner, D. P., & Jimenez, M. Z. (2019). Convergence for non-autonomous semidynamical systems with impulses. Journal of Differential Equations, 266( Ja 2019), 227-256. doi:10.1016/j.jde.2018.07.035
    • NLM

      Bonotto E de M, Demuner DP, Jimenez MZ. Convergence for non-autonomous semidynamical systems with impulses [Internet]. Journal of Differential Equations. 2019 ; 266( Ja 2019): 227-256.Available from: http://dx.doi.org/10.1016/j.jde.2018.07.035
    • Vancouver

      Bonotto E de M, Demuner DP, Jimenez MZ. Convergence for non-autonomous semidynamical systems with impulses [Internet]. Journal of Differential Equations. 2019 ; 266( Ja 2019): 227-256.Available from: http://dx.doi.org/10.1016/j.jde.2018.07.035
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, San Diego, v. 267, n. 5, p. 3199-3231, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2019.04.002 > DOI: 10.1016/j.jde.2019.04.002.
    • APA

      Silva, E. R. da. (2019). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, 267( 5), 3199-3231. doi:10.1016/j.jde.2019.04.002
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.002
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.002
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco; LAGUNA, Renato Andrielli; ZANI, Sérgio Luís. Global hypoellipticity of planar complex vector fields. Journal of Differential Equations, San Diego, v. 267, n. 9, p. 5220-5257, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2019.05.027 > DOI: 10.1016/j.jde.2019.05.027.
    • APA

      Bergamasco, A. P., Laguna, R. A., & Zani, S. L. (2019). Global hypoellipticity of planar complex vector fields. Journal of Differential Equations, 267( 9), 5220-5257. doi:10.1016/j.jde.2019.05.027
    • NLM

      Bergamasco AP, Laguna RA, Zani SL. Global hypoellipticity of planar complex vector fields [Internet]. Journal of Differential Equations. 2019 ; 267( 9): 5220-5257.Available from: http://dx.doi.org/10.1016/j.jde.2019.05.027
    • Vancouver

      Bergamasco AP, Laguna RA, Zani SL. Global hypoellipticity of planar complex vector fields [Internet]. Journal of Differential Equations. 2019 ; 267( 9): 5220-5257.Available from: http://dx.doi.org/10.1016/j.jde.2019.05.027
  • Source: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro; SICILIANO, Gaetano. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, Maryland Heights, v. 267, n. 2, p. 1025-1065, 2019. Disponível em: < https://doi.org/10.1016/j.jde.2019.02.001 > DOI: 10.1016/j.jde.2019.02.001.
    • APA

      d'Avenia, P., & Siciliano, G. (2019). Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, 267( 2), 1025-1065. doi:10.1016/j.jde.2019.02.001
    • NLM

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.Available from: https://doi.org/10.1016/j.jde.2019.02.001
    • Vancouver

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.Available from: https://doi.org/10.1016/j.jde.2019.02.001
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ESTABILIDADE DE LIAPUNOV

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Márcia Cristina Anderson Braz; GRAU, R; MESQUITA, Jaqueline Godoy; TOON, Eduard. Lyapunov stability for measure differential equations and dynamic equations on time scales. Journal of Differential Equations, San Diego, v. 267, n. 7, p. Se 2019, 2019. Disponível em: < http://dx.doi.org/10.1016/j.jde.2019.04.035 > DOI: 10.1016/j.jde.2019.04.035.
    • APA

      Federson, M. C. A. B., Grau, R., Mesquita, J. G., & Toon, E. (2019). Lyapunov stability for measure differential equations and dynamic equations on time scales. Journal of Differential Equations, 267( 7), Se 2019. doi:10.1016/j.jde.2019.04.035
    • NLM

      Federson MCAB, Grau R, Mesquita JG, Toon E. Lyapunov stability for measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2019 ; 267( 7): Se 2019.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.035
    • Vancouver

      Federson MCAB, Grau R, Mesquita JG, Toon E. Lyapunov stability for measure differential equations and dynamic equations on time scales [Internet]. Journal of Differential Equations. 2019 ; 267( 7): Se 2019.Available from: http://dx.doi.org/10.1016/j.jde.2019.04.035

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021