Filters : "Journal of Algebra" Limpar

Filters



Refine with date range


  • Source: Journal of Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e VOLKOV, Yury. Homogeneous triples for homogeneous algebras with two relations. Journal of Algebra, v. 599, p. 1-47, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2022.01.014. Acesso em: 14 ago. 2022.
    • APA

      Marcos, E. do N., & Volkov, Y. (2022). Homogeneous triples for homogeneous algebras with two relations. Journal of Algebra, 599, 1-47. doi:10.1016/j.jalgebra.2022.01.014
    • NLM

      Marcos E do N, Volkov Y. Homogeneous triples for homogeneous algebras with two relations [Internet]. Journal of Algebra. 2022 ; 599 1-47.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.01.014
    • Vancouver

      Marcos E do N, Volkov Y. Homogeneous triples for homogeneous algebras with two relations [Internet]. Journal of Algebra. 2022 ; 599 1-47.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.01.014
  • Source: Journal of Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Available on 2024-03-18Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OVALLE, Daniel Felipe Castro e SHESTAKOV, Ivan P. Composition color algebras. Journal of Algebra, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2022.03.012. Acesso em: 14 ago. 2022.
    • APA

      Ovalle, D. F. C., & Shestakov, I. P. (2022). Composition color algebras. Journal of Algebra. doi:10.1016/j.jalgebra.2022.03.012
    • NLM

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ;[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
    • Vancouver

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ;[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
  • Source: Journal of Algebra. Unidade: IME

    Subject: TEORIA DOS GRUPOS

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e KHRYPCHENKO, Mykola e MAKUTA, Mayumi. Inverse semigroup cohomology and crossed module extensions of semilattices of groups by inverse semigroups. Journal of Algebra, v. 593, p. 341-397, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.11.017. Acesso em: 14 ago. 2022.
    • APA

      Dokuchaev, M., Khrypchenko, M., & Makuta, M. (2022). Inverse semigroup cohomology and crossed module extensions of semilattices of groups by inverse semigroups. Journal of Algebra, 593, 341-397. doi:10.1016/j.jalgebra.2021.11.017
    • NLM

      Dokuchaev M, Khrypchenko M, Makuta M. Inverse semigroup cohomology and crossed module extensions of semilattices of groups by inverse semigroups [Internet]. Journal of Algebra. 2022 ; 593 341-397.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.017
    • Vancouver

      Dokuchaev M, Khrypchenko M, Makuta M. Inverse semigroup cohomology and crossed module extensions of semilattices of groups by inverse semigroups [Internet]. Journal of Algebra. 2022 ; 593 341-397.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.017
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude e MARCOS, Eduardo do Nascimento. Resolving by a free action linear category and applications to Hochschild-Mitchell (co)homology. Journal of Algebra, v. 591, p. 117-141, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.10.020. Acesso em: 14 ago. 2022.
    • APA

      Cibils, C., & Marcos, E. do N. (2022). Resolving by a free action linear category and applications to Hochschild-Mitchell (co)homology. Journal of Algebra, 591, 117-141. doi:10.1016/j.jalgebra.2021.10.020
    • NLM

      Cibils C, Marcos E do N. Resolving by a free action linear category and applications to Hochschild-Mitchell (co)homology [Internet]. Journal of Algebra. 2022 ; 591 117-141.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.020
    • Vancouver

      Cibils C, Marcos E do N. Resolving by a free action linear category and applications to Hochschild-Mitchell (co)homology [Internet]. Journal of Algebra. 2022 ; 591 117-141.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.020
  • Source: Journal of Algebra. Unidade: IME

    Subject: TEORIA DOS GRAFOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABRAMS, Gene e DOKUCHAEV, Michael e NAM, T. G. Realizing corners of Leavitt path algebras as Steinberg algebras, with corresponding connections to graph C*-algebras. Journal of Algebra, v. 593, p. 72-104, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.11.004. Acesso em: 14 ago. 2022.
    • APA

      Abrams, G., Dokuchaev, M., & Nam, T. G. (2022). Realizing corners of Leavitt path algebras as Steinberg algebras, with corresponding connections to graph C*-algebras. Journal of Algebra, 593, 72-104. doi:10.1016/j.jalgebra.2021.11.004
    • NLM

      Abrams G, Dokuchaev M, Nam TG. Realizing corners of Leavitt path algebras as Steinberg algebras, with corresponding connections to graph C*-algebras [Internet]. Journal of Algebra. 2022 ; 593 72-104.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.004
    • Vancouver

      Abrams G, Dokuchaev M, Nam TG. Realizing corners of Leavitt path algebras as Steinberg algebras, with corresponding connections to graph C*-algebras [Internet]. Journal of Algebra. 2022 ; 593 72-104.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.004
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEN, Yuqun e SHESTAKOV, Ivan P e ZHANG, Zerui. Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, v. 590, p. 234-253, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.10.015. Acesso em: 14 ago. 2022.
    • APA

      Chen, Y., Shestakov, I. P., & Zhang, Z. (2022). Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, 590, 234-253. doi:10.1016/j.jalgebra.2021.10.015
    • NLM

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
    • Vancouver

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
  • Source: Journal of Algebra. Unidade: IME

    Subjects: DOENÇA CRÔNICA, DOENÇAS CARDIOVASCULARES, ANÁLISE DE VARIÂNCIA, REGRESSÃO LOGÍSTICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CIBILS, Claude et al. Han's conjecture for bounded extensions. Journal of Algebra, v. 598, p. 48-67, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2022.01.022. Acesso em: 14 ago. 2022.
    • APA

      Cibils, C., Lanzilotta, M., Marcos, E. do N., & Solotar, A. (2022). Han's conjecture for bounded extensions. Journal of Algebra, 598, 48-67. doi:10.1016/j.jalgebra.2022.01.022
    • NLM

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Han's conjecture for bounded extensions [Internet]. Journal of Algebra. 2022 ; 598 48-67.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.01.022
    • Vancouver

      Cibils C, Lanzilotta M, Marcos E do N, Solotar A. Han's conjecture for bounded extensions [Internet]. Journal of Algebra. 2022 ; 598 48-67.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.01.022
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, v. 593, p. 295-318, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.11.021. Acesso em: 14 ago. 2022.
    • APA

      Grichkov, A., Guzzo Júnior, H., Rasskazova, M., & Zusmanovich, P. (2022). On simple 15-dimensional Lie algebras in characteristic 2. Journal of Algebra, 593, 295-318. doi:10.1016/j.jalgebra.2021.11.021
    • NLM

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
    • Vancouver

      Grichkov A, Guzzo Júnior H, Rasskazova M, Zusmanovich P. On simple 15-dimensional Lie algebras in characteristic 2 [Internet]. Journal of Algebra. 2022 ; 593 295-318.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.11.021
  • Source: Journal of Algebra. Unidade: IME

    Subject: ÁLGEBRA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PCHELINTSEV, Sergey Valentinovich e SHASHKOV, Oleg Vladimirovich e SHESTAKOV, Ivan P. Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, v. 572, p. 111-128, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.12.009. Acesso em: 14 ago. 2022.
    • APA

      Pchelintsev, S. V., Shashkov, O. V., & Shestakov, I. P. (2021). Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, 572, 111-128. doi:10.1016/j.jalgebra.2020.12.009
    • NLM

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
    • Vancouver

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
  • Source: Journal of Algebra. Unidade: IME

    Subject: ÁLGEBRA COMUTATIVA

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael et al. Partial generalized crossed products and a seven-term exact sequence. Journal of Algebra, v. 572, p. 195-230, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.12.014. Acesso em: 14 ago. 2022.
    • APA

      Dokuchaev, M., Paques, A., Pinedo, H., & Rocha, J. I. da. (2021). Partial generalized crossed products and a seven-term exact sequence. Journal of Algebra, 572, 195-230. doi:10.1016/j.jalgebra.2020.12.014
    • NLM

      Dokuchaev M, Paques A, Pinedo H, Rocha JI da. Partial generalized crossed products and a seven-term exact sequence [Internet]. Journal of Algebra. 2021 ; 572 195-230.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.014
    • Vancouver

      Dokuchaev M, Paques A, Pinedo H, Rocha JI da. Partial generalized crossed products and a seven-term exact sequence [Internet]. Journal of Algebra. 2021 ; 572 195-230.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.014
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, v. 574, p. 453-513, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.02.001. Acesso em: 14 ago. 2022.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2021). Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, 574, 453-513. doi:10.1016/j.jalgebra.2021.02.001
    • NLM

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001
    • Vancouver

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: CURVAS ALGÉBRICAS, TEORIA DE GALOIS, TEORIA DOS NÚMEROS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARTOLI, Daniele e BORGES FILHO, Herivelto Martins e QUOOS, Luciane. Rational functions with small value set. Journal of Algebra, v. 565, n. Ja 2021, p. 675-690, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.08.039. Acesso em: 14 ago. 2022.
    • APA

      Bartoli, D., Borges Filho, H. M., & Quoos, L. (2021). Rational functions with small value set. Journal of Algebra, 565( Ja 2021), 675-690. doi:10.1016/j.jalgebra.2020.08.039
    • NLM

      Bartoli D, Borges Filho HM, Quoos L. Rational functions with small value set [Internet]. Journal of Algebra. 2021 ; 565( Ja 2021): 675-690.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.08.039
    • Vancouver

      Bartoli D, Borges Filho HM, Quoos L. Rational functions with small value set [Internet]. Journal of Algebra. 2021 ; 565( Ja 2021): 675-690.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.08.039
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre et al. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops. Journal of Algebra, v. 575, p. 67-77, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.02.004. Acesso em: 14 ago. 2022.
    • APA

      Grichkov, A., Rasskazova, M., Sabinina, L., & Salim, M. (2021). On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops. Journal of Algebra, 575, 67-77. doi:10.1016/j.jalgebra.2021.02.004
    • NLM

      Grichkov A, Rasskazova M, Sabinina L, Salim M. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops [Internet]. Journal of Algebra. 2021 ; 575 67-77.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.004
    • Vancouver

      Grichkov A, Rasskazova M, Sabinina L, Salim M. On Malcev algebras nilpotent by Lie center and corresponding analytic Moufang loops [Internet]. Journal of Algebra. 2021 ; 575 67-77.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.004
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, VALORIZAÇÕES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Michael Willyans Borges de e NOVACOSKI, Josnei. Limit key polynomials as p-polynomials. Journal of Algebra, v. 579, p. 152-173, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.03.024. Acesso em: 14 ago. 2022.
    • APA

      Moraes, M. W. B. de, & Novacoski, J. (2021). Limit key polynomials as p-polynomials. Journal of Algebra, 579, 152-173. doi:10.1016/j.jalgebra.2021.03.024
    • NLM

      Moraes MWB de, Novacoski J. Limit key polynomials as p-polynomials [Internet]. Journal of Algebra. 2021 ; 579 152-173.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.03.024
    • Vancouver

      Moraes MWB de, Novacoski J. Limit key polynomials as p-polynomials [Internet]. Journal of Algebra. 2021 ; 579 152-173.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.03.024
  • Source: Journal of Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e VOLKOV, Y. Homogeneous algebras via homogeneous triples. Journal of Algebra, v. 566, p. 259-282, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.09.012. Acesso em: 14 ago. 2022.
    • APA

      Marcos, E. do N., & Volkov, Y. (2021). Homogeneous algebras via homogeneous triples. Journal of Algebra, 566, 259-282. doi:10.1016/j.jalgebra.2020.09.012
    • NLM

      Marcos E do N, Volkov Y. Homogeneous algebras via homogeneous triples [Internet]. Journal of Algebra. 2021 ; 566 259-282.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.09.012
    • Vancouver

      Marcos E do N, Volkov Y. Homogeneous algebras via homogeneous triples [Internet]. Journal of Algebra. 2021 ; 566 259-282.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.09.012
  • Source: Journal of Algebra. Unidade: IME

    Subject: ÁLGEBRAS DE HOPF

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CENTRONE, Lucio e YASUMURA, Felipe. Actions of Taft s algebras on finite dimensional algebras. Journal of Algebra, v. 560, p. 725-744, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.06.007. Acesso em: 14 ago. 2022.
    • APA

      Centrone, L., & Yasumura, F. (2020). Actions of Taft s algebras on finite dimensional algebras. Journal of Algebra, 560, 725-744. doi:10.1016/j.jalgebra.2020.06.007
    • NLM

      Centrone L, Yasumura F. Actions of Taft s algebras on finite dimensional algebras [Internet]. Journal of Algebra. 2020 ; 560 725-744.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.06.007
    • Vancouver

      Centrone L, Yasumura F. Actions of Taft s algebras on finite dimensional algebras [Internet]. Journal of Algebra. 2020 ; 560 725-744.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.06.007
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ÁLGEBRA, VALORIZAÇÕES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAES, Michael Willyans Borges de e NOVACOSKI, Josnei. Perron transforms and Hironaka’s game. Journal of Algebra, v. 563, p. 100-110, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.05.028. Acesso em: 14 ago. 2022.
    • APA

      Moraes, M. W. B. de, & Novacoski, J. (2020). Perron transforms and Hironaka’s game. Journal of Algebra, 563, 100-110. doi:10.1016/j.jalgebra.2020.05.028
    • NLM

      Moraes MWB de, Novacoski J. Perron transforms and Hironaka’s game [Internet]. Journal of Algebra. 2020 ; 563 100-110.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.05.028
    • Vancouver

      Moraes MWB de, Novacoski J. Perron transforms and Hironaka’s game [Internet]. Journal of Algebra. 2020 ; 563 100-110.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.05.028
  • Source: Journal of Algebra. Unidade: IME

    Subjects: TEORIA DE GALOIS DIFERENCIAL, ÁLGEBRA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Algebras of invariant differential operators. Journal of Algebra, v. 542, p. 215-229, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2019.09.014. Acesso em: 14 ago. 2022.
    • APA

      Futorny, V., & Schwarz, J. F. (2020). Algebras of invariant differential operators. Journal of Algebra, 542, 215-229. doi:10.1016/j.jalgebra.2019.09.014
    • NLM

      Futorny V, Schwarz JF. Algebras of invariant differential operators [Internet]. Journal of Algebra. 2020 ; 542 215-229.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.09.014
    • Vancouver

      Futorny V, Schwarz JF. Algebras of invariant differential operators [Internet]. Journal of Algebra. 2020 ; 542 215-229.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2019.09.014
  • Source: Journal of Algebra. Unidade: IME

    Subjects: COHOMOLOGIA DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DOKUCHAEV, Michael e KHRYPCHENKO, Mykola e SIMÓN, Juan Jacobo. Globalization of group cohomology in the sense of Alvares-Alves-Redondo. Journal of Algebra, v. 546, p. 604-640, 2020Tradução . . Disponível em: http://dx.doi.org/10.1016/j.jalgebra.2019.11.009. Acesso em: 14 ago. 2022.
    • APA

      Dokuchaev, M., Khrypchenko, M., & Simón, J. J. (2020). Globalization of group cohomology in the sense of Alvares-Alves-Redondo. Journal of Algebra, 546, 604-640. doi:10.1016/j.jalgebra.2019.11.009
    • NLM

      Dokuchaev M, Khrypchenko M, Simón JJ. Globalization of group cohomology in the sense of Alvares-Alves-Redondo [Internet]. Journal of Algebra. 2020 ; 546 604-640.[citado 2022 ago. 14 ] Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.11.009
    • Vancouver

      Dokuchaev M, Khrypchenko M, Simón JJ. Globalization of group cohomology in the sense of Alvares-Alves-Redondo [Internet]. Journal of Algebra. 2020 ; 546 604-640.[citado 2022 ago. 14 ] Available from: http://dx.doi.org/10.1016/j.jalgebra.2019.11.009
  • Source: Journal of Algebra. Unidade: ICMC

    Subjects: ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume e SILVA, Pryscilla. Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, v. 556, p. 547-580, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.03.018. Acesso em: 14 ago. 2022.
    • APA

      Mencattini, I., Quesney, A. T. G., & Silva, P. (2020). Post-symmetric braces and integration of post-Lie algebras. Journal of Algebra, 556, 547-580. doi:10.1016/j.jalgebra.2020.03.018
    • NLM

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018
    • Vancouver

      Mencattini I, Quesney ATG, Silva P. Post-symmetric braces and integration of post-Lie algebras [Internet]. Journal of Algebra. 2020 ; 556 547-580.[citado 2022 ago. 14 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.03.018

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022