Filters : "Fundamenta Mathematicae" Limpar

Filters



Refine with date range


  • In: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: Sistemas Dinâmicos, Teoria Do índice, Equações Diferenciais Funcionais, Equações Diferenciais Ordinárias, Teoria Qualitativa

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, Warszawa, Polska Akademia Nauk/Instytut Matematyczny, v. 250, p. 41-62, 2020. Disponível em: < https://doi.org/10.4064/fm700-8-2019 > DOI: 10.4064/fm700-8-2019.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2020). Conley index continuation for some classes of RFDEs on manifolds. Fundamenta Mathematicae, 250, 41-62. doi:10.4064/fm700-8-2019
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.Available from: https://doi.org/10.4064/fm700-8-2019
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index continuation for some classes of RFDEs on manifolds [Internet]. Fundamenta Mathematicae. 2020 ; 250 41-62.Available from: https://doi.org/10.4064/fm700-8-2019
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Topologia Dinâmica, Sistemas Dinâmicos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOYLAND, Philip; CARVALHO, André Salles de; HALL, Toby. Typical path components in tent map inverse limits. Fundamenta Mathematicae, Warszawa, Institute of Mathematics, Polish Academy of Sciences, v. 250, p. 301-318, 2020. Disponível em: < https://doi.org/10.4064/fm810-1-2020 > DOI: 10.4064/fm810-1-2020.
    • APA

      Boyland, P., Carvalho, A. S. de, & Hall, T. (2020). Typical path components in tent map inverse limits. Fundamenta Mathematicae, 250, 301-318. doi:10.4064/fm810-1-2020
    • NLM

      Boyland P, Carvalho AS de, Hall T. Typical path components in tent map inverse limits [Internet]. Fundamenta Mathematicae. 2020 ; 250 301-318.Available from: https://doi.org/10.4064/fm810-1-2020
    • Vancouver

      Boyland P, Carvalho AS de, Hall T. Typical path components in tent map inverse limits [Internet]. Fundamenta Mathematicae. 2020 ; 250 301-318.Available from: https://doi.org/10.4064/fm810-1-2020
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Hiperespaço, Topologia

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Vinicius de Oliveira; TOMITA, Artur Hideyuki. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, Warszawa, Institute of Mathematics, Polish Academy of Sciences, v. 247, n. 1, p. 99-108, 2019. Disponível em: < http://dx.doi.org/10.4064/fm657-10-2018 > DOI: 10.4064/fm657-10-2018.
    • APA

      Rodrigues, V. de O., & Tomita, A. H. (2019). Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace. Fundamenta Mathematicae, 247( 1), 99-108. doi:10.4064/fm657-10-2018
    • NLM

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.Available from: http://dx.doi.org/10.4064/fm657-10-2018
    • Vancouver

      Rodrigues V de O, Tomita AH. Small MAD families whose Isbell–Mrówka space has pseudocompact hyperspace [Internet]. Fundamenta Mathematicae. 2019 ; 247( 1): 99-108.Available from: http://dx.doi.org/10.4064/fm657-10-2018
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CORREA, Claudia; TAUSK, Daniel Victor. Local extension property for finite height spaces. Fundamenta Mathematicae, Warszawa, Institute of Mathematics, Polish Academy of Sciences, v. 245, n. 2, p. 149-165, 2019. Disponível em: < http://dx.doi.org/10.4064/fm513-6-2018 > DOI: 10.4064/fm513-6-2018.
    • APA

      Correa, C., & Tausk, D. V. (2019). Local extension property for finite height spaces. Fundamenta Mathematicae, 245( 2), 149-165. doi:10.4064/fm513-6-2018
    • NLM

      Correa C, Tausk DV. Local extension property for finite height spaces [Internet]. Fundamenta Mathematicae. 2019 ; 245( 2): 149-165.Available from: http://dx.doi.org/10.4064/fm513-6-2018
    • Vancouver

      Correa C, Tausk DV. Local extension property for finite height spaces [Internet]. Fundamenta Mathematicae. 2019 ; 245( 2): 149-165.Available from: http://dx.doi.org/10.4064/fm513-6-2018
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Topologia

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ORTIZ-CASTILLO, Y. F.; TOMITA, Artur Hideyuki. Pseudocompactness and resolvability. Fundamenta Mathematicae, Warszawa, Institute of Mathematics, Polish Academy of Sciences, v. 241, n. 2, p. 127-142, 2018. Disponível em: < http://dx.doi.org/10.4064/fm215-8-2017 > DOI: 10.4064/fm215-8-2017.
    • APA

      Ortiz-Castillo, Y. F., & Tomita, A. H. (2018). Pseudocompactness and resolvability. Fundamenta Mathematicae, 241( 2), 127-142. doi:10.4064/fm215-8-2017
    • NLM

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.Available from: http://dx.doi.org/10.4064/fm215-8-2017
    • Vancouver

      Ortiz-Castillo YF, Tomita AH. Pseudocompactness and resolvability [Internet]. Fundamenta Mathematicae. 2018 ; 241( 2): 127-142.Available from: http://dx.doi.org/10.4064/fm215-8-2017
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Matemática

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina; RINCÓN VILLAMIZAR, Michael Alexander. Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K. Fundamenta Mathematicae, Warszawa, n. 239, p. 185-200, 2017. Disponível em: < http://dx.doi.org/10.4064/fm294-1-2017 > DOI: 10.4064/fm294-1-2017.
    • APA

      Galego, E. M., & Rincón Villamizar, M. A. (2017). Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K. Fundamenta Mathematicae, ( 239), 185-200. doi:10.4064/fm294-1-2017
    • NLM

      Galego EM, Rincón Villamizar MA. Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K [Internet]. Fundamenta Mathematicae. 2017 ;( 239): 185-200.Available from: http://dx.doi.org/10.4064/fm294-1-2017
    • Vancouver

      Galego EM, Rincón Villamizar MA. Banach-lattice isomorphisms of C0(K,X) spaces which determine the locally compact spaces K [Internet]. Fundamenta Mathematicae. 2017 ;( 239): 185-200.Available from: http://dx.doi.org/10.4064/fm294-1-2017
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Grupos Topológicos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEIDERMAN, Arkady G; PESTOV, Vladimir G; TOMITA, Artur Hideyuki. On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, Warsaw, Polska Akademia Nauk, v. 238, p. 79-100, 2017. Disponível em: < https://dx.doi.org/10.4064/fm188-9-2016 > DOI: 10.4064/fm188-9-2016.
    • APA

      Leiderman, A. G., Pestov, V. G., & Tomita, A. H. (2017). On topological groups admitting a base at the identity indexed by ωω. Fundamenta Mathematicae, 238, 79-100. doi:10.4064/fm188-9-2016
    • NLM

      Leiderman AG, Pestov VG, Tomita AH. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.Available from: https://dx.doi.org/10.4064/fm188-9-2016
    • Vancouver

      Leiderman AG, Pestov VG, Tomita AH. On topological groups admitting a base at the identity indexed by ωω [Internet]. Fundamenta Mathematicae. 2017 ; 238 79-100.Available from: https://dx.doi.org/10.4064/fm188-9-2016
  • In: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: Teoria Ergódica, Sistemas Dinâmicos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MICENA, Fernando; TAHZIBI, Ali. On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, Warszawa, Polska Akademia Nauk/Instytut Matematyczny, v. 235, p. 37-48, 2016. Disponível em: < http://dx.doi.org/10.4064/fm92-10-2015 > DOI: 10.4064/fm92-10-2015.
    • APA

      Micena, F., & Tahzibi, A. (2016). On the unstable directions and Lyapunov exponents of Anosov endomorphisms. Fundamenta Mathematicae, 235, 37-48. doi:10.4064/fm92-10-2015
    • NLM

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.Available from: http://dx.doi.org/10.4064/fm92-10-2015
    • Vancouver

      Micena F, Tahzibi A. On the unstable directions and Lyapunov exponents of Anosov endomorphisms [Internet]. Fundamenta Mathematicae. 2016 ; 235 37-48.Available from: http://dx.doi.org/10.4064/fm92-10-2015
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Dinâmica Topológica, Teoria Ergódica, Sistemas Dinâmicos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Tatiane Cardoso; GONSCHOROWSKI, Juliano dos Santos; TAL, Fábio Armando. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits. Fundamenta Mathematicae, Warsaw, v. 231, n. 1, p. 93-99, 2015. Disponível em: < http://dx.doi.org/10.4064/fm231-1-6 > DOI: 10.4064/fm231-1-6.
    • APA

      Batista, T. C., Gonschorowski, J. dos S., & Tal, F. A. (2015). Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits. Fundamenta Mathematicae, 231( 1), 93-99. doi:10.4064/fm231-1-6
    • NLM

      Batista TC, Gonschorowski J dos S, Tal FA. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits [Internet]. Fundamenta Mathematicae. 2015 ; 231( 1): 93-99.Available from: http://dx.doi.org/10.4064/fm231-1-6
    • Vancouver

      Batista TC, Gonschorowski J dos S, Tal FA. Density of the set of symbolic dynamics with all ergodic measures supported on periodic orbits [Internet]. Fundamenta Mathematicae. 2015 ; 231( 1): 93-99.Available from: http://dx.doi.org/10.4064/fm231-1-6
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Sistemas Dinâmicos, Teorema Do Ponto Fixo, Topologia Algébrica

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADDAS-ZANATA, Salvador; SALOMÃO, Pedro Antônio Santoro. Persistence of fixed points under rigid perturbations of maps. Fundamenta Mathematicae, Warsaw, v. 227, n. 1, p. 1-19, 2014. Disponível em: < http://dx.doi.org/10.4064/fm227-1-1 > DOI: 10.4064/fm227-1-1.
    • APA

      Addas-Zanata, S., & Salomão, P. A. S. (2014). Persistence of fixed points under rigid perturbations of maps. Fundamenta Mathematicae, 227( 1), 1-19. doi:10.4064/fm227-1-1
    • NLM

      Addas-Zanata S, Salomão PAS. Persistence of fixed points under rigid perturbations of maps [Internet]. Fundamenta Mathematicae. 2014 ; 227( 1): 1-19.Available from: http://dx.doi.org/10.4064/fm227-1-1
    • Vancouver

      Addas-Zanata S, Salomão PAS. Persistence of fixed points under rigid perturbations of maps [Internet]. Fundamenta Mathematicae. 2014 ; 227( 1): 1-19.Available from: http://dx.doi.org/10.4064/fm227-1-1
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Espaços De Banach, Teoria Dos Conjuntos

    Versão PublicadaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina; KOSZMIDER, Piotr Boleslaw. ℓ∞-sums and the Banach space ℓ∞/c0. Fundamenta Mathematicae, Warsaw, v. 224, n. 2, p. 175-185, 2014. Disponível em: < http://dx.doi.org/10.4064/fm224-2-3 > DOI: 10.4064/fm224-2-3.
    • APA

      Brech, C., & Koszmider, P. B. (2014). ℓ∞-sums and the Banach space ℓ∞/c0. Fundamenta Mathematicae, 224( 2), 175-185. doi:10.4064/fm224-2-3
    • NLM

      Brech C, Koszmider PB. ℓ∞-sums and the Banach space ℓ∞/c0 [Internet]. Fundamenta Mathematicae. 2014 ; 224( 2): 175-185.Available from: http://dx.doi.org/10.4064/fm224-2-3
    • Vancouver

      Brech C, Koszmider PB. ℓ∞-sums and the Banach space ℓ∞/c0 [Internet]. Fundamenta Mathematicae. 2014 ; 224( 2): 175-185.Available from: http://dx.doi.org/10.4064/fm224-2-3
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Leandro Candido; GALEGO, Eloi Medina. Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3. Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 220, n. 1, p. 83-92, 2013. Disponível em: < http://dx.doi.org/10.4064/fm220-1-5 > DOI: 10.4064/fm220-1-5.
    • APA

      Batista, L. C., & Galego, E. M. (2013). Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3. Fundamenta Mathematicae, 220( 1), 83-92. doi:10.4064/fm220-1-5
    • NLM

      Batista LC, Galego EM. Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3 [Internet]. Fundamenta Mathematicae. 2013 ; 220( 1): 83-92.Available from: http://dx.doi.org/10.4064/fm220-1-5
    • Vancouver

      Batista LC, Galego EM. Embeddings of C(K) spaces into C(S, X) spaces with distortion strictly less than 3 [Internet]. Fundamenta Mathematicae. 2013 ; 220( 1): 83-92.Available from: http://dx.doi.org/10.4064/fm220-1-5
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Análise Funcional

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LEANDRO, Candido; GALEGO, Eloi Medina. How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 218. p. 151-163, 2012. Disponível em: < http://dx.doi.org/10.4064/fm218-2-3 > DOI: 10.4064/fm218-2-3.
    • APA

      Leandro, C., & Galego, E. M. (2012). How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? Fundamenta Mathematicae, 218. p. 151-163. doi:10.4064/fm218-2-3
    • NLM

      Leandro C, Galego EM. How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? [Internet]. Fundamenta Mathematicae. 2012 ; 218. p. 151-163Available from: http://dx.doi.org/10.4064/fm218-2-3
    • Vancouver

      Leandro C, Galego EM. How far is C0(Γ,X) with Γ discrete from C0(K,X) spaces? [Internet]. Fundamenta Mathematicae. 2012 ; 218. p. 151-163Available from: http://dx.doi.org/10.4064/fm218-2-3
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Espaços De Banach, Teoria Dos Conjuntos, Topologia

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BRECH, Christina; KOSZMIDER, Piotr. On biorthogonal systems whose functionals are finitely supported. Fundamenta Mathematicae, Warszawa, Institute of Mathematics, Polish Academy of Sciences, v. 213, n. 1, p. 43-66, 2011. Disponível em: < http://dx.doi.org/10.4064/fm213-1-3 > DOI: 10.4064/fm213-1-3.
    • APA

      Brech, C., & Koszmider, P. (2011). On biorthogonal systems whose functionals are finitely supported. Fundamenta Mathematicae, 213( 1), 43-66. doi:10.4064/fm213-1-3
    • NLM

      Brech C, Koszmider P. On biorthogonal systems whose functionals are finitely supported [Internet]. Fundamenta Mathematicae. 2011 ; 213( 1): 43-66.Available from: http://dx.doi.org/10.4064/fm213-1-3
    • Vancouver

      Brech C, Koszmider P. On biorthogonal systems whose functionals are finitely supported [Internet]. Fundamenta Mathematicae. 2011 ; 213( 1): 43-66.Available from: http://dx.doi.org/10.4064/fm213-1-3
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Grupos Topológicos

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BOERO, Ana Carolina; TOMITA, Artur Hideyuki. A group topology on the free abelian group of cardinality. Fundamenta Mathematicae, Warsaw, v. 212, n. 3, p. 235-260, 2011. Disponível em: < http://dx.doi.org/10.4064/fm212-3-3 > DOI: 10.4064/fm212-3-3.
    • APA

      Boero, A. C., & Tomita, A. H. (2011). A group topology on the free abelian group of cardinality. Fundamenta Mathematicae, 212( 3), 235-260. doi:10.4064/fm212-3-3
    • NLM

      Boero AC, Tomita AH. A group topology on the free abelian group of cardinality [Internet]. Fundamenta Mathematicae. 2011 ; 212( 3): 235-260.Available from: http://dx.doi.org/10.4064/fm212-3-3
    • Vancouver

      Boero AC, Tomita AH. A group topology on the free abelian group of cardinality [Internet]. Fundamenta Mathematicae. 2011 ; 212( 3): 235-260.Available from: http://dx.doi.org/10.4064/fm212-3-3
  • In: Fundamenta Mathematicae. Unidade: EACH

    Subjects: Análise Funcional, álgebras De Banach, Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FAJARDO, Rogério Augusto dos Santos. An indecomposable Banach space of continuous functions which has small density. Fundamenta Mathematicae, Varsóvia, v. 202, n. 1, p. 43-63, 2009. Disponível em: < http://journals.impan.gov.pl/cgi-bin/fm/pdf?fm202-1-02 > DOI: 10.4064/fm202-1-2.
    • APA

      Fajardo, R. A. dos S. (2009). An indecomposable Banach space of continuous functions which has small density. Fundamenta Mathematicae, 202( 1), 43-63. doi:10.4064/fm202-1-2
    • NLM

      Fajardo RA dos S. An indecomposable Banach space of continuous functions which has small density [Internet]. Fundamenta Mathematicae. 2009 ; 202( 1): 43-63.Available from: http://journals.impan.gov.pl/cgi-bin/fm/pdf?fm202-1-02
    • Vancouver

      Fajardo RA dos S. An indecomposable Banach space of continuous functions which has small density [Internet]. Fundamenta Mathematicae. 2009 ; 202( 1): 43-63.Available from: http://journals.impan.gov.pl/cgi-bin/fm/pdf?fm202-1-02
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Espaços De Banach

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALEGO, Eloi Medina. On isomorphism classes of C(2m⊕[0,α]) spaces. Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 204, n. 1, p. 87-95, 2009. Disponível em: < http://dx.doi.org/10.4064/fm204-1-5 > DOI: 10.4064/fm204-1-5.
    • APA

      Galego, E. M. (2009). On isomorphism classes of C(2m⊕[0,α]) spaces. Fundamenta Mathematicae, 204( 1), 87-95. doi:10.4064/fm204-1-5
    • NLM

      Galego EM. On isomorphism classes of C(2m⊕[0,α]) spaces [Internet]. Fundamenta Mathematicae. 2009 ; 204( 1): 87-95.Available from: http://dx.doi.org/10.4064/fm204-1-5
    • Vancouver

      Galego EM. On isomorphism classes of C(2m⊕[0,α]) spaces [Internet]. Fundamenta Mathematicae. 2009 ; 204( 1): 87-95.Available from: http://dx.doi.org/10.4064/fm204-1-5
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Geometria Euclidiana

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; PENTEADO, Dirceu; VIEIRA, J. P. Fixed points on Klein bottle fiber bundles over the circle. Fundamenta Mathematicae[S.l.], Instytut Matematyczny PAN, v. 203, n. 3, p. 263-292, 2009. Disponível em: < http://dx.doi.org/10.4064/fm203-3-3 > DOI: 10.4064/fm203-3-3.
    • APA

      Gonçalves, D. L., Penteado, D., & Vieira, J. P. (2009). Fixed points on Klein bottle fiber bundles over the circle. Fundamenta Mathematicae, 203( 3), 263-292. doi:10.4064/fm203-3-3
    • NLM

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on Klein bottle fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2009 ; 203( 3): 263-292.Available from: http://dx.doi.org/10.4064/fm203-3-3
    • Vancouver

      Gonçalves DL, Penteado D, Vieira JP. Fixed points on Klein bottle fiber bundles over the circle [Internet]. Fundamenta Mathematicae. 2009 ; 203( 3): 263-292.Available from: http://dx.doi.org/10.4064/fm203-3-3
  • In: Fundamenta Mathematicae. Unidade: IME

    Subjects: Teoria Ergódica

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAL, Fábio Armando; ADDAS-ZANATA, Salvador. On maximizing measures of homeomorphisms on compact manifolds. Fundamenta Mathematicae, Warsaw, v. 200, n. 2, p. 145-159, 2008. Disponível em: < https://doi.org/10.4064/fm200-2-3 > DOI: 10.4064/fm200-2-3.
    • APA

      Tal, F. A., & Addas-Zanata, S. (2008). On maximizing measures of homeomorphisms on compact manifolds. Fundamenta Mathematicae, 200( 2), 145-159. doi:10.4064/fm200-2-3
    • NLM

      Tal FA, Addas-Zanata S. On maximizing measures of homeomorphisms on compact manifolds [Internet]. Fundamenta Mathematicae. 2008 ; 200( 2): 145-159.Available from: https://doi.org/10.4064/fm200-2-3
    • Vancouver

      Tal FA, Addas-Zanata S. On maximizing measures of homeomorphisms on compact manifolds [Internet]. Fundamenta Mathematicae. 2008 ; 200( 2): 145-159.Available from: https://doi.org/10.4064/fm200-2-3
  • In: Fundamenta Mathematicae. Unidade: ICMC

    Subjects: Equações Diferenciais Parciais

    Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Continuation of the connection matrix for singularly perturbed hyperbolic equations. Fundamenta Mathematicae[S.l.], v. 196, p. 253-273, 2007. Disponível em: < http://journals.impan.gov.pl/fm/index.html > DOI: 10.4064/fm196-3-3.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2007). Continuation of the connection matrix for singularly perturbed hyperbolic equations. Fundamenta Mathematicae, 196, 253-273. doi:10.4064/fm196-3-3
    • NLM

      Carbinatto M do C, Rybakowski KP. Continuation of the connection matrix for singularly perturbed hyperbolic equations [Internet]. Fundamenta Mathematicae. 2007 ; 196 253-273.Available from: http://journals.impan.gov.pl/fm/index.html
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Continuation of the connection matrix for singularly perturbed hyperbolic equations [Internet]. Fundamenta Mathematicae. 2007 ; 196 253-273.Available from: http://journals.impan.gov.pl/fm/index.html


Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020