Filters : "Electronic Journal of Differential Equations" Limpar

Filters



Refine with date range


  • Source: Electronic Journal of Differential Equations. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DE NAVIER-STOKES, SINGULARIDADES, FLUÍDOS COMPLEXOS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALMEIDA, Adilson e CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. Uniqueness for optimal control problems of two-dimensional second grade fluids. Electronic Journal of Differential Equations, v. 2022, n. 22, p. 1-12, 2022Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf. Acesso em: 02 dez. 2022.
    • APA

      Almeida, A., Chemetov, N. V., & Cipriano, F. (2022). Uniqueness for optimal control problems of two-dimensional second grade fluids. Electronic Journal of Differential Equations, 2022( 22), 1-12. Recuperado de https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
    • NLM

      Almeida A, Chemetov NV, Cipriano F. Uniqueness for optimal control problems of two-dimensional second grade fluids [Internet]. Electronic Journal of Differential Equations. 2022 ; 2022( 22): 1-12.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
    • Vancouver

      Almeida A, Chemetov NV, Cipriano F. Uniqueness for optimal control problems of two-dimensional second grade fluids [Internet]. Electronic Journal of Differential Equations. 2022 ; 2022( 22): 1-12.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2022/22/almeida.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS NÃO LINEARES, TEORIA DA BIFURCAÇÃO, INVARIANTES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e RODRIGUES, Camila Aparecida Benedito. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, v. 69, p. 1-52, 2021Tradução . . Disponível em: https://ejde.math.txstate.edu/. Acesso em: 02 dez. 2022.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Rodrigues, C. A. B. (2021). Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant. Electronic Journal of Differential Equations, 69, 1-52. Recuperado de https://ejde.math.txstate.edu/
    • NLM

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/
    • Vancouver

      Llibre J, Oliveira RD dos S, Rodrigues CAB. Quadratic systems with an invariant algebraic curve of degree 3 and a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2021 ; 69 1-52.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, INVARIANTES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, v. 2020, n. 55, p. 1-19, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf. Acesso em: 02 dez. 2022.
    • APA

      Oliveira, R. D. dos S., & Valls, C. (2020). Global dynamics of the May-Leonard system with a Darboux invariant. Electronic Journal of Differential Equations, 2020( 55), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • NLM

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Valls C. Global dynamics of the May-Leonard system with a Darboux invariant [Internet]. Electronic Journal of Differential Equations. 2020 ; 2020( 55): 1-19.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/55/oliveira.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES

    Versão PublicadaOnline source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BARBOSA, Pricila S. e PEREIRA, Antônio Luiz. Continuity of attractors for C1 perturbations of a smooth domain. Electronic Journal of Differential Equations, n. 97, p. 1-31, 2020Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf. Acesso em: 02 dez. 2022.
    • APA

      Barbosa, P. S., & Pereira, A. L. (2020). Continuity of attractors for C1 perturbations of a smooth domain. Electronic Journal of Differential Equations, ( 97), 1-31. Recuperado de https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
    • NLM

      Barbosa PS, Pereira AL. Continuity of attractors for C1 perturbations of a smooth domain [Internet]. Electronic Journal of Differential Equations. 2020 ;( 97): 1-31.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
    • Vancouver

      Barbosa PS, Pereira AL. Continuity of attractors for C1 perturbations of a smooth domain [Internet]. Electronic Journal of Differential Equations. 2020 ;( 97): 1-31.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2020/97/barbosa.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES, SISTEMAS DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos et al. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electronic Journal of Differential Equations, v. 2017, n. 295, p. 1-122, 2017Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf. Acesso em: 02 dez. 2022.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., Schlomiuk, D., & Vulpe, N. (2017). Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas. Electronic Journal of Differential Equations, 2017( 295), 1-122. Recuperado de https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
    • NLM

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. Electronic Journal of Differential Equations. 2017 ; 2017( 295): 1-122.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
    • Vancouver

      Oliveira RD dos S, Rezende AC, Schlomiuk D, Vulpe N. Geometric and algebraic classification of quadratic differential systems with invariant hyperbolas [Internet]. Electronic Journal of Differential Equations. 2017 ; 2017( 295): 1-122.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2017/295/oliveira.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: FFCLRP

    Subjects: EQUAÇÕES DIFERENCIAIS, MATEMÁTICA, CONTROLABILIDADE

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIERRI, Michelle e O'REGAN, Donal e PROKOPCZYK, Andrea. On recent developments treating the exact controllability of abstract control problems. Electronic Journal of Differential Equations, v. 2016, n. 160, p. 1-9, 2016Tradução . . Disponível em: http://ejde.math.txstate.edu/Volumes/2016/160/pierri.pdf. Acesso em: 02 dez. 2022.
    • APA

      Pierri, M., O'Regan, D., & Prokopczyk, A. (2016). On recent developments treating the exact controllability of abstract control problems. Electronic Journal of Differential Equations, 2016( 160), 1-9. Recuperado de http://ejde.math.txstate.edu/Volumes/2016/160/pierri.pdf
    • NLM

      Pierri M, O'Regan D, Prokopczyk A. On recent developments treating the exact controllability of abstract control problems [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 160): 1-9.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/Volumes/2016/160/pierri.pdf
    • Vancouver

      Pierri M, O'Regan D, Prokopczyk A. On recent developments treating the exact controllability of abstract control problems [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 160): 1-9.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/Volumes/2016/160/pierri.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: SINGULARIDADES, TEORIA QUALITATIVA

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e REZENDE, Alex C e VULPE, Nicolae. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, v. 2016, n. 162, p. 1-50, 2016Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 02 dez. 2022.
    • APA

      Oliveira, R. D. dos S., Rezende, A. C., & Vulpe, N. (2016). Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12'. Electronic Journal of Differential Equations, 2016( 162), 1-50. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Oliveira RD dos S, Rezende AC, Vulpe N. Family of quadratic differential systems with invariant hyperbolas: a complete classification in the space 'R POT. 12' [Internet]. Electronic Journal of Differential Equations. 2016 ; 2016( 162): 1-50.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
  • Source: Electronic Journal of Differential Equations. Unidade: FFCLRP

    Subject: EQUAÇÕES DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PIERRI, Michelle e O'REGAN, Donal. S-asymptotically 'ômega'-periodic solutions for abstract neutral differential equations. Electronic Journal of Differential Equations, v. 2015, n. 210, p. 1-14, 2015Tradução . . Disponível em: http://ejde.math.txstate.edu/Volumes/2015/210/pierri.pdf. Acesso em: 02 dez. 2022.
    • APA

      Pierri, M., & O'Regan, D. (2015). S-asymptotically 'ômega'-periodic solutions for abstract neutral differential equations. Electronic Journal of Differential Equations, 2015( 210), 1-14. Recuperado de http://ejde.math.txstate.edu/Volumes/2015/210/pierri.pdf
    • NLM

      Pierri M, O'Regan D. S-asymptotically 'ômega'-periodic solutions for abstract neutral differential equations [Internet]. Electronic Journal of Differential Equations. 2015 ; 2015( 210): 1-14.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/Volumes/2015/210/pierri.pdf
    • Vancouver

      Pierri M, O'Regan D. S-asymptotically 'ômega'-periodic solutions for abstract neutral differential equations [Internet]. Electronic Journal of Differential Equations. 2015 ; 2015( 210): 1-14.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/Volumes/2015/210/pierri.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, EQUAÇÕES DIFERENCIAIS, SOLUÇÕES PERIÓDICAS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRASSON, Miguel Vinícius Santini et al. Oscillations with one degree of freedon and discontinuous energy. Electronic Journal of Differential Equations, v. 2015, n. 275, p. 1-10, 2015Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 02 dez. 2022.
    • APA

      Frasson, M. V. S., Gadotti, M. C., Nicola, S. H. J., & Taboas, P. Z. (2015). Oscillations with one degree of freedon and discontinuous energy. Electronic Journal of Differential Equations, 2015( 275), 1-10. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Frasson MVS, Gadotti MC, Nicola SHJ, Taboas PZ. Oscillations with one degree of freedon and discontinuous energy [Internet]. Electronic Journal of Differential Equations. 2015 ; 2015( 275): 1-10.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Frasson MVS, Gadotti MC, Nicola SHJ, Taboas PZ. Oscillations with one degree of freedon and discontinuous energy [Internet]. Electronic Journal of Differential Equations. 2015 ; 2015( 275): 1-10.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: SÉRIES DE FOURIER, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Michele de Oliveira e OLIVA, Sérgio Muniz. An extension problem related to the square root of the Laplacian with Neumann boundary condition. Electronic Journal of Differential Equations, v. 2014, n. 12, p. 1-18, 2014Tradução . . Acesso em: 02 dez. 2022.
    • APA

      Alves, M. de O., & Oliva, S. M. (2014). An extension problem related to the square root of the Laplacian with Neumann boundary condition. Electronic Journal of Differential Equations, 2014( 12), 1-18.
    • NLM

      Alves M de O, Oliva SM. An extension problem related to the square root of the Laplacian with Neumann boundary condition. Electronic Journal of Differential Equations. 2014 ; 2014( 12): 1-18.[citado 2022 dez. 02 ]
    • Vancouver

      Alves M de O, Oliva SM. An extension problem related to the square root of the Laplacian with Neumann boundary condition. Electronic Journal of Differential Equations. 2014 ; 2014( 12): 1-18.[citado 2022 dez. 02 ]
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, TEORIA ASSINTÓTICA, SOLITONS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LOPES, Orlando Francisco. Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations, n. 153, p. 9 , 2014Tradução . . Acesso em: 02 dez. 2022.
    • APA

      Lopes, O. F. (2014). Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations, ( 153), 9 .
    • NLM

      Lopes OF. Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations. 2014 ;( 153): 9 .[citado 2022 dez. 02 ]
    • Vancouver

      Lopes OF. Stability of solitary waves for a three-wave interaction model. Electronic Journal of Differential Equations. 2014 ;( 153): 9 .[citado 2022 dez. 02 ]
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SIMAL, Janete Crema e NASCIMENTO, Arnaldo Simal do e SONEGO, Maicon. Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary. Electronic Journal of Differential Equations, v. 2012, n. 62, p. 1-14, 2012Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 02 dez. 2022.
    • APA

      Simal, J. C., Nascimento, A. S. do, & Sonego, M. (2012). Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary. Electronic Journal of Differential Equations, 2012( 62), 1-14. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Simal JC, Nascimento AS do, Sonego M. Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary [Internet]. Electronic Journal of Differential Equations. 2012 ; 2012( 62): 1-14.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Simal JC, Nascimento AS do, Sonego M. Sufficient conditions on diffusivity for the existence and nonexistence of stable equilibria with nonlinear flux on the boundary [Internet]. Electronic Journal of Differential Equations. 2012 ; 2012( 62): 1-14.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subject: SISTEMAS DINÂMICOS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PESSOA, Claudio e SOTOMAYOR, Jorge. Stable piecewise polynomial vector fields. Electronic Journal of Differential Equations, n. 165, p. 1–15, 2012Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2012/165/pessoa.pdf. Acesso em: 02 dez. 2022.
    • APA

      Pessoa, C., & Sotomayor, J. (2012). Stable piecewise polynomial vector fields. Electronic Journal of Differential Equations, ( 165), 1–15. Recuperado de https://ejde.math.txstate.edu/Volumes/2012/165/pessoa.pdf
    • NLM

      Pessoa C, Sotomayor J. Stable piecewise polynomial vector fields [Internet]. Electronic Journal of Differential Equations. 2012 ;( 165): 1–15.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2012/165/pessoa.pdf
    • Vancouver

      Pessoa C, Sotomayor J. Stable piecewise polynomial vector fields [Internet]. Electronic Journal of Differential Equations. 2012 ;( 165): 1–15.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2012/165/pessoa.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor Oliveira e SOARES, Sérgio Henrique Monari e SOUTO, Marco Aurélio Soares. Schrödinger-poisson equations with supercritical growth. Electronic Journal of Differential Equations, v. 2011, n. 1, p. 1-11, 2011Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 02 dez. 2022.
    • APA

      Alves, C. O., Soares, S. H. M., & Souto, M. A. S. (2011). Schrödinger-poisson equations with supercritical growth. Electronic Journal of Differential Equations, 2011( 1), 1-11. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Alves CO, Soares SHM, Souto MAS. Schrödinger-poisson equations with supercritical growth [Internet]. Electronic Journal of Differential Equations. 2011 ; 2011( 1): 1-11.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Alves CO, Soares SHM, Souto MAS. Schrödinger-poisson equations with supercritical growth [Internet]. Electronic Journal of Differential Equations. 2011 ; 2011( 1): 1-11.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
  • Source: Electronic Journal of Differential Equations. Unidade: IME

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PAVA, Jaime Angulo e HAKKAEV, Sevdzhan. Ill-posedness for periodic nonlinear dispersive equations. Electronic Journal of Differential Equations, n. 119, p. 1-19, 2010Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2010/119/angulo.pdf. Acesso em: 02 dez. 2022.
    • APA

      Pava, J. A., & Hakkaev, S. (2010). Ill-posedness for periodic nonlinear dispersive equations. Electronic Journal of Differential Equations, ( 119), 1-19. Recuperado de https://ejde.math.txstate.edu/Volumes/2010/119/angulo.pdf
    • NLM

      Pava JA, Hakkaev S. Ill-posedness for periodic nonlinear dispersive equations [Internet]. Electronic Journal of Differential Equations. 2010 ;( 119): 1-19.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2010/119/angulo.pdf
    • Vancouver

      Pava JA, Hakkaev S. Ill-posedness for periodic nonlinear dispersive equations [Internet]. Electronic Journal of Differential Equations. 2010 ;( 119): 1-19.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2010/119/angulo.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: FFCLRP

    Subject: GEOMETRIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NASCIMENTO, Arnaldo S. e GONÇALVES, Alexandre Casassola. Instability of elleptic equations on compact riemannian manifolds with non-negative ricci curvature. Electronic Journal of Differential Equations, v. 2010, n. 67, p. 1-18, 2010Tradução . . Acesso em: 02 dez. 2022.
    • APA

      Nascimento, A. S., & Gonçalves, A. C. (2010). Instability of elleptic equations on compact riemannian manifolds with non-negative ricci curvature. Electronic Journal of Differential Equations, 2010( 67), 1-18.
    • NLM

      Nascimento AS, Gonçalves AC. Instability of elleptic equations on compact riemannian manifolds with non-negative ricci curvature. Electronic Journal of Differential Equations. 2010 ; 2010( 67): 1-18.[citado 2022 dez. 02 ]
    • Vancouver

      Nascimento AS, Gonçalves AC. Instability of elleptic equations on compact riemannian manifolds with non-negative ricci curvature. Electronic Journal of Differential Equations. 2010 ; 2010( 67): 1-18.[citado 2022 dez. 02 ]
  • Source: Electronic Journal of Differential Equations. Unidade: EACH

    Subjects: ESPAÇOS DE BANACH, EQUAÇÕES DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUNHOZ, Antonio Sergio e SOUZA FILHO, Antônio Calixto de. Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces. Electronic Journal of Differential Equations, v. 2009, n. 31, p. 1-14, 2009Tradução . . Disponível em: http://www.emis.de/journals/EJDE/2009/31/munhoz.pdf. Acesso em: 02 dez. 2022.
    • APA

      Munhoz, A. S., & Souza Filho, A. C. de. (2009). Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces. Electronic Journal of Differential Equations, 2009( 31), 1-14. Recuperado de http://www.emis.de/journals/EJDE/2009/31/munhoz.pdf
    • NLM

      Munhoz AS, Souza Filho AC de. Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces [Internet]. Electronic Journal of Differential Equations. 2009 ; 2009( 31): 1-14.[citado 2022 dez. 02 ] Available from: http://www.emis.de/journals/EJDE/2009/31/munhoz.pdf
    • Vancouver

      Munhoz AS, Souza Filho AC de. Existence and analyticity of a parabolic evolution operator for nonautonomous linear equations in Banach spaces [Internet]. Electronic Journal of Differential Equations. 2009 ; 2009( 31): 1-14.[citado 2022 dez. 02 ] Available from: http://www.emis.de/journals/EJDE/2009/31/munhoz.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subject: EQUAÇÕES DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORALES, Eduardo Alex Hernandez e SAKTHIVEL, Rathinasamy e AKI, Sueli Mieko Tanaka. Existence results for impulsive evolution differential equations with state-dependent delay. Electronic Journal of Differential Equations, v. 2008, n. 28, p. 1-11, 2008Tradução . . Disponível em: http://ejde.math.txstate.edu/Volumes/2008/28/hernandez.pdf. Acesso em: 02 dez. 2022.
    • APA

      Morales, E. A. H., Sakthivel, R., & Aki, S. M. T. (2008). Existence results for impulsive evolution differential equations with state-dependent delay. Electronic Journal of Differential Equations, 2008( 28), 1-11. Recuperado de http://ejde.math.txstate.edu/Volumes/2008/28/hernandez.pdf
    • NLM

      Morales EAH, Sakthivel R, Aki SMT. Existence results for impulsive evolution differential equations with state-dependent delay [Internet]. Electronic Journal of Differential Equations. 2008 ; 2008( 28): 1-11.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/Volumes/2008/28/hernandez.pdf
    • Vancouver

      Morales EAH, Sakthivel R, Aki SMT. Existence results for impulsive evolution differential equations with state-dependent delay [Internet]. Electronic Journal of Differential Equations. 2008 ; 2008( 28): 1-11.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/Volumes/2008/28/hernandez.pdf
  • Source: Electronic Journal of Differential Equations. Unidade: ICMC

    Subject: EQUAÇÕES DIFERENCIAIS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PLANAS, Gabriela del Valle. Existence of solutions to a phase-field model with phase-dependent heat absorption. Electronic Journal of Differential Equations, v. 2007, n. 28, p. 1-12, 2007Tradução . . Disponível em: http://ejde.math.txstate.edu/. Acesso em: 02 dez. 2022.
    • APA

      Planas, G. del V. (2007). Existence of solutions to a phase-field model with phase-dependent heat absorption. Electronic Journal of Differential Equations, 2007( 28), 1-12. Recuperado de http://ejde.math.txstate.edu/
    • NLM

      Planas G del V. Existence of solutions to a phase-field model with phase-dependent heat absorption [Internet]. Electronic Journal of Differential Equations. 2007 ; 2007( 28): 1-12.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
    • Vancouver

      Planas G del V. Existence of solutions to a phase-field model with phase-dependent heat absorption [Internet]. Electronic Journal of Differential Equations. 2007 ; 2007( 28): 1-12.[citado 2022 dez. 02 ] Available from: http://ejde.math.txstate.edu/
  • Source: Electronic Journal of Differential Equations. Unidades: IME, EACH

    Subject: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Online source accessHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Luís Augusto Fernandes de e PEREIRA, Antônio Luiz e PEREIRA, Marcone Corrêa. Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain. Electronic Journal of Differential Equations, v. 100, p. 1-18, 2005Tradução . . Disponível em: https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf. Acesso em: 02 dez. 2022.
    • APA

      Oliveira, L. A. F. de, Pereira, A. L., & Pereira, M. C. (2005). Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain. Electronic Journal of Differential Equations, 100, 1-18. Recuperado de https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf
    • NLM

      Oliveira LAF de, Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain [Internet]. Electronic Journal of Differential Equations. 2005 ; 100 1-18.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf
    • Vancouver

      Oliveira LAF de, Pereira AL, Pereira MC. Continuity of attractors for a reaction-diffusion problem with respect to variations of the domain [Internet]. Electronic Journal of Differential Equations. 2005 ; 100 1-18.[citado 2022 dez. 02 ] Available from: https://ejde.math.txstate.edu/Volumes/2005/100/oliveira.pdf

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022