Filtros : "Communications in Contemporary Mathematics" Limpar

Filtros



Refine with date range


  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, EQUAÇÕES NÃO LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume; OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, Singapore, v. 20, n. 4, p. 1750033-1-1750033-15, 2018. Disponível em: < http://dx.doi.org/10.1142/S021919971750033X > DOI: 10.1142/S021919971750033X.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2018). Quadratic systems with an invariant conic having Darboux invariants. Communications in Contemporary Mathematics, 20( 4), 1750033-1-1750033-15. doi:10.1142/S021919971750033X
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.Available from: http://dx.doi.org/10.1142/S021919971750033X
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with an invariant conic having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 4): 1750033-1-1750033-15.Available from: http://dx.doi.org/10.1142/S021919971750033X
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, MÉTODOS VARIACIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOARES, Sérgio Henrique Monari; LEUYACC, Yony Raúl Santaria. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Communications in Contemporary Mathematics, Singapore, v. 20, n. 8, p. 1750053-1-1750053-37, 2018. Disponível em: < http://dx.doi.org/10.1142/S0219199717500535 > DOI: 10.1142/S0219199717500535.
    • APA

      Soares, S. H. M., & Leuyacc, Y. R. S. (2018). Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity. Communications in Contemporary Mathematics, 20( 8), 1750053-1-1750053-37. doi:10.1142/S0219199717500535
    • NLM

      Soares SHM, Leuyacc YRS. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 8): 1750053-1-1750053-37.Available from: http://dx.doi.org/10.1142/S0219199717500535
    • Vancouver

      Soares SHM, Leuyacc YRS. Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 8): 1750053-1-1750053-37.Available from: http://dx.doi.org/10.1142/S0219199717500535
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA DOS SÓLIDOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAVARES, E. H. Gomes; SILVA, M. A. Jorge; MA, To Fu. Sharp decay rates for a class of nonlinear viscoelastic plate models. Communications in Contemporary Mathematics, Singapore, v. 20, n. 2, p. 1750010-1-1750010-21, 2018. Disponível em: < http://dx.doi.org/10.1142/S0219199717500109 > DOI: 10.1142/S0219199717500109.
    • APA

      Tavares, E. H. G., Silva, M. A. J., & Ma, T. F. (2018). Sharp decay rates for a class of nonlinear viscoelastic plate models. Communications in Contemporary Mathematics, 20( 2), 1750010-1-1750010-21. doi:10.1142/S0219199717500109
    • NLM

      Tavares EHG, Silva MAJ, Ma TF. Sharp decay rates for a class of nonlinear viscoelastic plate models [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 2): 1750010-1-1750010-21.Available from: http://dx.doi.org/10.1142/S0219199717500109
    • Vancouver

      Tavares EHG, Silva MAJ, Ma TF. Sharp decay rates for a class of nonlinear viscoelastic plate models [Internet]. Communications in Contemporary Mathematics. 2018 ; 20( 2): 1750010-1-1750010-21.Available from: http://dx.doi.org/10.1142/S0219199717500109
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Ederson Moreira dos; PACELLA, Filomena. Morse index of radial nodal solutions of Hénon type equations in dimension two. Communications in Contemporary Mathematics, Singapore, v. 19, n. 3, p. 1650042-1-1650042-16, 2017. Disponível em: < http://dx.doi.org/10.1142/S0219199716500425 > DOI: 10.1142/S0219199716500425.
    • APA

      Santos, E. M. dos, & Pacella, F. (2017). Morse index of radial nodal solutions of Hénon type equations in dimension two. Communications in Contemporary Mathematics, 19( 3), 1650042-1-1650042-16. doi:10.1142/S0219199716500425
    • NLM

      Santos EM dos, Pacella F. Morse index of radial nodal solutions of Hénon type equations in dimension two [Internet]. Communications in Contemporary Mathematics. 2017 ; 19( 3): 1650042-1-1650042-16.Available from: http://dx.doi.org/10.1142/S0219199716500425
    • Vancouver

      Santos EM dos, Pacella F. Morse index of radial nodal solutions of Hénon type equations in dimension two [Internet]. Communications in Contemporary Mathematics. 2017 ; 19( 3): 1650042-1-1650042-16.Available from: http://dx.doi.org/10.1142/S0219199716500425
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SINGULARIDADES, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume; OLIVEIRA, Regilene Delazari dos Santos. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, Singapore, v. 17, n. 3, p. 1450018-1-1450018-17, 2015. Disponível em: < http://dx.doi.org/10.1142/S0219199714500187 > DOI: 10.1142/S0219199714500187.
    • APA

      Llibre, J., & Oliveira, R. D. dos S. (2015). Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants. Communications in Contemporary Mathematics, 17( 3), 1450018-1-1450018-17. doi:10.1142/S0219199714500187
    • NLM

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.Available from: http://dx.doi.org/10.1142/S0219199714500187
    • Vancouver

      Llibre J, Oliveira RD dos S. Quadratic systems with invariant straight lines of total multiplicity two having Darboux invariants [Internet]. Communications in Contemporary Mathematics. 2015 ; 17( 3): 1450018-1-1450018-17.Available from: http://dx.doi.org/10.1142/S0219199714500187
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASSA, Eugenio Tommaso; UBILLA, Pedro. Superlinear elliptic problems with sign changing coefficients. Communications in Contemporary Mathematics, Singapore, v. 14, n. 1, p. 125001-1-1250001-21, 2012. Disponível em: < http://dx.doi.org/10.1142/S0219199712500010 > DOI: 10.1142/S0219199712500010.
    • APA

      Massa, E. T., & Ubilla, P. (2012). Superlinear elliptic problems with sign changing coefficients. Communications in Contemporary Mathematics, 14( 1), 125001-1-1250001-21. doi:10.1142/S0219199712500010
    • NLM

      Massa ET, Ubilla P. Superlinear elliptic problems with sign changing coefficients [Internet]. Communications in Contemporary Mathematics. 2012 ; 14( 1): 125001-1-1250001-21.Available from: http://dx.doi.org/10.1142/S0219199712500010
    • Vancouver

      Massa ET, Ubilla P. Superlinear elliptic problems with sign changing coefficients [Internet]. Communications in Contemporary Mathematics. 2012 ; 14( 1): 125001-1-1250001-21.Available from: http://dx.doi.org/10.1142/S0219199712500010
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Ederson Moreira dos. Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent. Communications in Contemporary Mathematics, Hackensack, 2010. Disponível em: < http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf >.
    • APA

      Santos, E. M. dos. (2010). Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent. Communications in Contemporary Mathematics. Recuperado de http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf
    • NLM

      Santos EM dos. Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent [Internet]. Communications in Contemporary Mathematics. 2010 ;Available from: http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf
    • Vancouver

      Santos EM dos. Positive solutions for a fourth-order quasilinear equation with critical Sobolev exponent [Internet]. Communications in Contemporary Mathematics. 2010 ;Available from: http://www.worldscinet.com/ccm/12/preserved-docs/1201/S0219199710003701.pdf
  • Source: Communications in Contemporary Mathematics. Unidade: ICMC

    Subjects: GEOMETRIA DIFERENCIAL CLÁSSICA, SINGULARIDADES, EQUAÇÕES ALGÉBRICAS DIFERENCIAIS, SISTEMAS DINÂMICOS, SUPERFÍCIES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROMERO-FUSTER, M. C; RUAS, Maria Aparecida Soares; TARI, Farid. Asymptotic curves on surfaces in R⁵. Communications in Contemporary Mathematics, Singapore, v. 10, n. 3, p. 309-335, 2008. Disponível em: < http://dx.doi.org/10.1142/S0219199708002806 > DOI: 10.1142/S0219199708002806.
    • APA

      Romero-Fuster, M. C., Ruas, M. A. S., & Tari, F. (2008). Asymptotic curves on surfaces in R⁵. Communications in Contemporary Mathematics, 10( 3), 309-335. doi:10.1142/S0219199708002806
    • NLM

      Romero-Fuster MC, Ruas MAS, Tari F. Asymptotic curves on surfaces in R⁵ [Internet]. Communications in Contemporary Mathematics. 2008 ; 10( 3): 309-335.Available from: http://dx.doi.org/10.1142/S0219199708002806
    • Vancouver

      Romero-Fuster MC, Ruas MAS, Tari F. Asymptotic curves on surfaces in R⁵ [Internet]. Communications in Contemporary Mathematics. 2008 ; 10( 3): 309-335.Available from: http://dx.doi.org/10.1142/S0219199708002806

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021