Filtros : "Communications in Algebra" Limpar

Filtros



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P; ZHANG, Zerui. Solvability and nilpotency of Novikov algebras. Communications in Algebra, New York, v. 48, n. 12, p. 5412-5420, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1789652 > DOI: 10.1080/00927872.2020.1789652.
    • APA

      Shestakov, I. P., & Zhang, Z. (2020). Solvability and nilpotency of Novikov algebras. Communications in Algebra, 48( 12), 5412-5420. doi:10.1080/00927872.2020.1789652
    • NLM

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.Available from: https://doi.org/10.1080/00927872.2020.1789652
    • Vancouver

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.Available from: https://doi.org/10.1080/00927872.2020.1789652
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Disponível em 2021-07-10Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo; GUZZO JÚNIOR, Henrique; WEI, Feng. Multiplicative Lie-type derivations on alternative rings. Communications in Algebra, New York, v. 48, n. 12, p. 5396-5411, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1789160 > DOI: 10.1080/00927872.2020.1789160.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Wei, F. (2020). Multiplicative Lie-type derivations on alternative rings. Communications in Algebra, 48( 12), 5396-5411. doi:10.1080/00927872.2020.1789160
    • NLM

      Ferreira BLM, Guzzo Júnior H, Wei F. Multiplicative Lie-type derivations on alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 12): 5396-5411.Available from: https://doi.org/10.1080/00927872.2020.1789160
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Wei F. Multiplicative Lie-type derivations on alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 12): 5396-5411.Available from: https://doi.org/10.1080/00927872.2020.1789160
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale; SHESTAKOV, Ivan P. Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, New York, v. 48, n. 7, p. 3091-3098, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1729363 > DOI: 10.1080/00927872.2020.1729363.
    • APA

      Crode, S. D., & Shestakov, I. P. (2020). Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48( 7), 3091-3098. doi:10.1080/00927872.2020.1729363
    • NLM

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
    • Vancouver

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.Available from: https://doi.org/10.1080/00927872.2020.1729363
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo; GUZZO JÚNIOR, Henrique; FERREIRA, Ruth Nascimento. Jordan derivations of alternative rings. Communications in Algebra, New York, v. 48, n. 2, p. 717-723, 2020. Disponível em: < https://doi.org/10.1080/00927872.2019.1659285 > DOI: 10.1080/00927872.2019.1659285.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Ferreira, R. N. (2020). Jordan derivations of alternative rings. Communications in Algebra, 48( 2), 717-723. doi:10.1080/00927872.2019.1659285
    • NLM

      Ferreira BLM, Guzzo Júnior H, Ferreira RN. Jordan derivations of alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 2): 717-723.Available from: https://doi.org/10.1080/00927872.2019.1659285
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Ferreira RN. Jordan derivations of alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 2): 717-723.Available from: https://doi.org/10.1080/00927872.2019.1659285
  • Source: Communications in Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; SANKARAN, Parameswaran; WONG, Peter. Twisted conjugacy in free products. Communications in Algebra, New York, v. 48, n. 9, p. 3916-3921, 2020. Disponível em: < http://dx.doi.org/10.1080/00927872.2020.1751848 > DOI: 10.1080/00927872.2020.1751848.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2020). Twisted conjugacy in free products. Communications in Algebra, 48( 9), 3916-3921. doi:10.1080/00927872.2020.1751848
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.Available from: http://dx.doi.org/10.1080/00927872.2020.1751848
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.Available from: http://dx.doi.org/10.1080/00927872.2020.1751848
  • Source: Communications in Algebra. Unidade: ICMC

    Assunto: CURVAS ALGÉBRICAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTANUCCI, Maria; SPEZIALI, Pietro. Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, Philadelphia, v. 48, n. 9, p. 3690-3706, 2020. Disponível em: < https://doi.org/10.1080/00927872.2020.1743714 > DOI: 10.1080/00927872.2020.1743714.
    • APA

      Montanucci, M., & Speziali, P. (2020). Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, 48( 9), 3690-3706. doi:10.1080/00927872.2020.1743714
    • NLM

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.Available from: https://doi.org/10.1080/00927872.2020.1743714
    • Vancouver

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.Available from: https://doi.org/10.1080/00927872.2020.1743714
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento; MENDOZA, Octavio; SÁENZ, Corina. Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, New York, v. 47, n. 8, p. 3076-3093, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2018.1550786 > DOI: 10.1080/00927872.2018.1550786.
    • APA

      Marcos, E. do N., Mendoza, O., & Sáenz, C. (2019). Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, 47( 8), 3076-3093. doi:10.1080/00927872.2018.1550786
    • NLM

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.Available from: http://dx.doi.org/10.1080/00927872.2018.1550786
    • Vancouver

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.Available from: http://dx.doi.org/10.1080/00927872.2018.1550786
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr; FUTORNY, Vyacheslav. Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, New York, v. 47, n. 10, p. 4114–4124, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2019.1579336 > DOI: 10.1080/00927872.2019.1579336.
    • APA

      Bavula, V., & Futorny, V. (2019). Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, 47( 10), 4114–4124. doi:10.1080/00927872.2019.1579336
    • NLM

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
    • Vancouver

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
  • Source: Communications in Algebra. Unidade: IME

    Subjects: GRUPOS FINITOS ABSTRATOS, GRUPOS NILPOTENTES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima; NASYBULLOV, Timur. On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, New York, v. 47, n. 3, p. 930-944, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2018.1498873 > DOI: 10.1080/00927872.2018.1498873.
    • APA

      Gonçalves, D. L., & Nasybullov, T. (2019). On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, 47( 3), 930-944. doi:10.1080/00927872.2018.1498873
    • NLM

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.Available from: http://dx.doi.org/10.1080/00927872.2018.1498873
    • Vancouver

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.Available from: http://dx.doi.org/10.1080/00927872.2018.1498873
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav; SCHWARZ, João Fernando. Quantum linear Galois orders. Communications in Algebra, New York, v. 47, n. 12, p. 5361–5369, 2019. Disponível em: < http://dx.doi.org/10.1080/00927872.2019.1623236 > DOI: 10.1080/00927872.2019.1623236.
    • APA

      Futorny, V., & Schwarz, J. F. (2019). Quantum linear Galois orders. Communications in Algebra, 47( 12), 5361–5369. doi:10.1080/00927872.2019.1623236
    • NLM

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.Available from: http://dx.doi.org/10.1080/00927872.2019.1623236
    • Vancouver

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.Available from: http://dx.doi.org/10.1080/00927872.2019.1623236
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, ÁLGEBRA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELOSO, Marcelo; SHESTAKOV, Ivan P. Rings of constants of linear derivations on Fermat rings. Communications in Algebra, New York, v. 46, n. 12, p. 5469-5479, 2018. Disponível em: < https://doi.org/10.1080/00927872.2018.1469032 > DOI: 10.1080/00927872.2018.1469032.
    • APA

      Veloso, M., & Shestakov, I. P. (2018). Rings of constants of linear derivations on Fermat rings. Communications in Algebra, 46( 12), 5469-5479. doi:10.1080/00927872.2018.1469032
    • NLM

      Veloso M, Shestakov IP. Rings of constants of linear derivations on Fermat rings [Internet]. Communications in Algebra. 2018 ; 46( 12): 5469-5479.Available from: https://doi.org/10.1080/00927872.2018.1469032
    • Vancouver

      Veloso M, Shestakov IP. Rings of constants of linear derivations on Fermat rings [Internet]. Communications in Algebra. 2018 ; 46( 12): 5469-5479.Available from: https://doi.org/10.1080/00927872.2018.1469032
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly; FUTORNY, Vyacheslav. Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, Philadelphia, v. 46, n. 8, p. 3413–3429, 2018. Disponível em: < http://dx.doi.org/10.1080/00927872.2017.1412456 > DOI: 10.1080/00927872.2017.1412456.
    • APA

      Billig, Y., & Futorny, V. (2018). Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, 46( 8), 3413–3429. doi:10.1080/00927872.2017.1412456
    • NLM

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.Available from: http://dx.doi.org/10.1080/00927872.2017.1412456
    • Vancouver

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.Available from: http://dx.doi.org/10.1080/00927872.2017.1412456
  • Source: Communications in Algebra. Unidade: IME

    Subjects: COMBINATÓRIA, TEORIA DOS GRUPOS, LAÇOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre; RASSKAZOVA, Diana; RASSKAZOVA, Marina; STUHL, Izabella. Nilpotent Steiner loops of class 2. Communications in Algebra, New York, v. 46, n. 12, p. 5480-5486, 2018. Disponível em: < http://dx.doi.org/10.1080/00927872.2018.1470243 > DOI: 10.1080/00927872.2018.1470243.
    • APA

      Grichkov, A., Rasskazova, D., Rasskazova, M., & Stuhl, I. (2018). Nilpotent Steiner loops of class 2. Communications in Algebra, 46( 12), 5480-5486. doi:10.1080/00927872.2018.1470243
    • NLM

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.Available from: http://dx.doi.org/10.1080/00927872.2018.1470243
    • Vancouver

      Grichkov A, Rasskazova D, Rasskazova M, Stuhl I. Nilpotent Steiner loops of class 2 [Internet]. Communications in Algebra. 2018 ; 46( 12): 5480-5486.Available from: http://dx.doi.org/10.1080/00927872.2018.1470243
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS COM DIVISÃO, GRUPOS LIVRES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Jairo Zacarias. Free groups in a normal subgroup of the field of fractions of a skew polynomial ring. Communications in Algebra, New York, v. 45, n. 12, p. 5193-5201, 2017. Disponível em: < https://dx.doi.org/10.1080/00927872.2017.1298774 > DOI: 10.1080/00927872.2017.1298774.
    • APA

      Gonçalves, J. Z. (2017). Free groups in a normal subgroup of the field of fractions of a skew polynomial ring. Communications in Algebra, 45( 12), 5193-5201. doi:10.1080/00927872.2017.1298774
    • NLM

      Gonçalves JZ. Free groups in a normal subgroup of the field of fractions of a skew polynomial ring [Internet]. Communications in Algebra. 2017 ; 45( 12): 5193-5201.Available from: https://dx.doi.org/10.1080/00927872.2017.1298774
    • Vancouver

      Gonçalves JZ. Free groups in a normal subgroup of the field of fractions of a skew polynomial ring [Internet]. Communications in Algebra. 2017 ; 45( 12): 5193-5201.Available from: https://dx.doi.org/10.1080/00927872.2017.1298774
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, ANÉIS E ÁLGEBRAS COMUTATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HOŁUBOWSKI, Waldemar; KASHUBA, Iryna; ŻUREK, Sebastian. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, New York, v. 45, n. 11, p. 4679-4685, 2017. Disponível em: < https://dx.doi.org/10.1080/00927872.2016.1277388 > DOI: 10.1080/00927872.2016.1277388.
    • APA

      Hołubowski, W., Kashuba, I., & Żurek, S. (2017). Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring. Communications in Algebra, 45( 11), 4679-4685. doi:10.1080/00927872.2016.1277388
    • NLM

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.Available from: https://dx.doi.org/10.1080/00927872.2016.1277388
    • Vancouver

      Hołubowski W, Kashuba I, Żurek S. Derivations of the Lie algebra of infinite strictly upper triangular matrices over a commutative ring [Internet]. Communications in Algebra. 2017 ; 45( 11): 4679-4685.Available from: https://dx.doi.org/10.1080/00927872.2016.1277388
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS LIVRES, FUNÇÕES AUTOMORFAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KAYGORODOV, Ivan; SHESTAKOV, Ivan P; UMIRBAEV, Ualbai. Free generic Poisson fields and algebras. Communications in Algebra, New York, v. 46, p. 1799-1812, 2017. Disponível em: < https://dx.doi.org/10.1080/00927872.2017.1358269 > DOI: 10.1080/00927872.2017.1358269.
    • APA

      Kaygorodov, I., Shestakov, I. P., & Umirbaev, U. (2017). Free generic Poisson fields and algebras. Communications in Algebra, 46, 1799-1812. doi:10.1080/00927872.2017.1358269
    • NLM

      Kaygorodov I, Shestakov IP, Umirbaev U. Free generic Poisson fields and algebras [Internet]. Communications in Algebra. 2017 ; 46 1799-1812.Available from: https://dx.doi.org/10.1080/00927872.2017.1358269
    • Vancouver

      Kaygorodov I, Shestakov IP, Umirbaev U. Free generic Poisson fields and algebras [Internet]. Communications in Algebra. 2017 ; 46 1799-1812.Available from: https://dx.doi.org/10.1080/00927872.2017.1358269
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRAZ, Raul Antonio; SILVA, Renata Rodrigues Marcuz. Units of Z(Cp × C2) and Z(Cp × C2 × C2). Communications in Algebra, Philadelphia, v. 44, n. 2, p. 851-872, 2016. Disponível em: < http://dx.doi.org/10.1080/00927872.2014.937539 > DOI: 10.1080/00927872.2014.937539.
    • APA

      Ferraz, R. A., & Silva, R. R. M. (2016). Units of Z(Cp × C2) and Z(Cp × C2 × C2). Communications in Algebra, 44( 2), 851-872. doi:10.1080/00927872.2014.937539
    • NLM

      Ferraz RA, Silva RRM. Units of Z(Cp × C2) and Z(Cp × C2 × C2) [Internet]. Communications in Algebra. 2016 ; 44( 2): 851-872.Available from: http://dx.doi.org/10.1080/00927872.2014.937539
    • Vancouver

      Ferraz RA, Silva RRM. Units of Z(Cp × C2) and Z(Cp × C2 × C2) [Internet]. Communications in Algebra. 2016 ; 44( 2): 851-872.Available from: http://dx.doi.org/10.1080/00927872.2014.937539
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FÊMINA, L. L; GALVES, A. P. T; MANZOLI NETO, Oziride; SPREAFICO, M. Fundamental domain and cellular decomposition of tetrahedral spherical space forms. Communications in Algebra, Philadelphia, v. 44, n. 2, p. 768-786, 2016. Disponível em: < http://dx.doi.org/10.1080/00927872.2014.990022 > DOI: 10.1080/00927872.2014.990022.
    • APA

      Fêmina, L. L., Galves, A. P. T., Manzoli Neto, O., & Spreafico, M. (2016). Fundamental domain and cellular decomposition of tetrahedral spherical space forms. Communications in Algebra, 44( 2), 768-786. doi:10.1080/00927872.2014.990022
    • NLM

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico M. Fundamental domain and cellular decomposition of tetrahedral spherical space forms [Internet]. Communications in Algebra. 2016 ; 44( 2): 768-786.Available from: http://dx.doi.org/10.1080/00927872.2014.990022
    • Vancouver

      Fêmina LL, Galves APT, Manzoli Neto O, Spreafico M. Fundamental domain and cellular decomposition of tetrahedral spherical space forms [Internet]. Communications in Algebra. 2016 ; 44( 2): 768-786.Available from: http://dx.doi.org/10.1080/00927872.2014.990022
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS DE GRUPOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DOS GRUPOS, REPRESENTAÇÕES DE GRUPOS FINITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERRAZ, Raul Antonio; SIMÓN, Juan Jacobo. Central Units in ℤCp, q. Communications in Algebra, Philadelphia, v. 44, n. 5, p. 2264-2275, 2016. Disponível em: < http://dx.doi.org/10.1080/00927872.2015.1027382 > DOI: 10.1080/00927872.2015.1027382.
    • APA

      Ferraz, R. A., & Simón, J. J. (2016). Central Units in ℤCp, q. Communications in Algebra, 44( 5), 2264-2275. doi:10.1080/00927872.2015.1027382
    • NLM

      Ferraz RA, Simón JJ. Central Units in ℤCp, q [Internet]. Communications in Algebra. 2016 ; 44( 5): 2264-2275.Available from: http://dx.doi.org/10.1080/00927872.2015.1027382
    • Vancouver

      Ferraz RA, Simón JJ. Central Units in ℤCp, q [Internet]. Communications in Algebra. 2016 ; 44( 5): 2264-2275.Available from: http://dx.doi.org/10.1080/00927872.2015.1027382
  • Source: Communications in Algebra. Unidade: IME

    Assunto: ÁLGEBRAS DE LIE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAO, S. Eswara; FUTORNY, Vyacheslav; SHARMA, Sachin S. Weyl modules associated to Kac–Moody Lie algebras. Communications in Algebra, Philadelphia, v. 44, n. 12, p. 5045-5057, 2016. Disponível em: < http://dx.doi.org/10.1080/00927872.2015.1130143 > DOI: 10.1080/00927872.2015.1130143.
    • APA

      Rao, S. E., Futorny, V., & Sharma, S. S. (2016). Weyl modules associated to Kac–Moody Lie algebras. Communications in Algebra, 44( 12), 5045-5057. doi:10.1080/00927872.2015.1130143
    • NLM

      Rao SE, Futorny V, Sharma SS. Weyl modules associated to Kac–Moody Lie algebras [Internet]. Communications in Algebra. 2016 ; 44( 12): 5045-5057.Available from: http://dx.doi.org/10.1080/00927872.2015.1130143
    • Vancouver

      Rao SE, Futorny V, Sharma SS. Weyl modules associated to Kac–Moody Lie algebras [Internet]. Communications in Algebra. 2016 ; 44( 12): 5045-5057.Available from: http://dx.doi.org/10.1080/00927872.2015.1130143

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021