Filters : "Communications in Algebra" Limpar

Filters



Refine with date range


  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Available on 2022-11-13Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHUST, Viktor e COELHO, Flávio Ulhoa. On the correspondence between path algebras and generalized path algebras. Communications in Algebra, v. 50, n. 5, p. 2056-2071, 2022Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1998516. Acesso em: 25 jun. 2022.
    • APA

      Chust, V., & Coelho, F. U. (2022). On the correspondence between path algebras and generalized path algebras. Communications in Algebra, 50( 5), 2056-2071. doi:10.1080/00927872.2021.1998516
    • NLM

      Chust V, Coelho FU. On the correspondence between path algebras and generalized path algebras [Internet]. Communications in Algebra. 2022 ; 50( 5): 2056-2071.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1998516
    • Vancouver

      Chust V, Coelho FU. On the correspondence between path algebras and generalized path algebras [Internet]. Communications in Algebra. 2022 ; 50( 5): 2056-2071.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1998516
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TEORIA DA REPRESENTAÇÃO

    Available on 2022-11-01Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e MOREIRA, Marcelo. Piecewise hereditary incidence algebras of Dynkin and extended Dynkin type. Communications in Algebra, v. 50, n. 3, p. 1220-1266, 2022Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1979992. Acesso em: 25 jun. 2022.
    • APA

      Marcos, E. do N., & Moreira, M. (2022). Piecewise hereditary incidence algebras of Dynkin and extended Dynkin type. Communications in Algebra, 50( 3), 1220-1266. doi:10.1080/00927872.2021.1979992
    • NLM

      Marcos E do N, Moreira M. Piecewise hereditary incidence algebras of Dynkin and extended Dynkin type [Internet]. Communications in Algebra. 2022 ; 50( 3): 1220-1266.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1979992
    • Vancouver

      Marcos E do N, Moreira M. Piecewise hereditary incidence algebras of Dynkin and extended Dynkin type [Internet]. Communications in Algebra. 2022 ; 50( 3): 1220-1266.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1979992
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS DE GRUPOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GARCIA, Vitor Araujo e FERRAZ, Raul Antonio. Central units in some integral group rings. Communications in Algebra, v. 49, n. 9, p. 4000-4015, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1910284. Acesso em: 25 jun. 2022.
    • APA

      Garcia, V. A., & Ferraz, R. A. (2021). Central units in some integral group rings. Communications in Algebra, 49( 9), 4000-4015. doi:10.1080/00927872.2021.1910284
    • NLM

      Garcia VA, Ferraz RA. Central units in some integral group rings [Internet]. Communications in Algebra. 2021 ; 49( 9): 4000-4015.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1910284
    • Vancouver

      Garcia VA, Ferraz RA. Central units in some integral group rings [Internet]. Communications in Algebra. 2021 ; 49( 9): 4000-4015.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1910284
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE HOPF, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENCATTINI, Igor e QUESNEY, Alexandre Thomas Guillaume. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, v. 49, n. 8, p. 3507-3533, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1900212. Acesso em: 25 jun. 2022.
    • APA

      Mencattini, I., & Quesney, A. T. G. (2021). Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion. Communications in Algebra, 49( 8), 3507-3533. doi:10.1080/00927872.2021.1900212
    • NLM

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
    • Vancouver

      Mencattini I, Quesney ATG. Crossed morphisms, integration of post-Lie algebras and the post-Lie Magnus expansion [Internet]. Communications in Algebra. 2021 ; 49( 8): 3507-3533.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1900212
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE, ÁLGEBRAS DE JORDAN

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e ELGENDY, Hader A. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, v. 49, n. 7, p. 2934-2940, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1884691. Acesso em: 25 jun. 2022.
    • APA

      Grichkov, A., & Elgendy, H. A. (2021). The universal associative enveloping algebra of a Lie–Jordan algebra with a unit. Communications in Algebra, 49( 7), 2934-2940. doi:10.1080/00927872.2021.1884691
    • NLM

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1884691
    • Vancouver

      Grichkov A, Elgendy HA. The universal associative enveloping algebra of a Lie–Jordan algebra with a unit [Internet]. Communications in Algebra. 2021 ; 49( 7): 2934-2940.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1884691
  • Source: Communications in Algebra. Unidades: IME, EACH

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHN, Antonio et al. About nilalgebras satisfying (xy)2 = x2y2. Communications in Algebra, v. 49, n. 9, p. 3708-3719, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1903024. Acesso em: 25 jun. 2022.
    • APA

      Behn, A., Correa, I., Fernández, J. C. G., & Garcia, C. I. (2021). About nilalgebras satisfying (xy)2 = x2y2. Communications in Algebra, 49( 9), 3708-3719. doi:10.1080/00927872.2021.1903024
    • NLM

      Behn A, Correa I, Fernández JCG, Garcia CI. About nilalgebras satisfying (xy)2 = x2y2 [Internet]. Communications in Algebra. 2021 ; 49( 9): 3708-3719.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1903024
    • Vancouver

      Behn A, Correa I, Fernández JCG, Garcia CI. About nilalgebras satisfying (xy)2 = x2y2 [Internet]. Communications in Algebra. 2021 ; 49( 9): 3708-3719.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1903024
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Available on 2022-07-11Online source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, v. 49, n. 12, p. 5472-5482, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1947310. Acesso em: 25 jun. 2022.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical II. Communications in Algebra, 49( 12), 5472-5482. doi:10.1080/00927872.2021.1947310
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical II [Internet]. Communications in Algebra. 2021 ; 49( 12): 5472-5482.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1947310
  • Source: Communications in Algebra. Unidade: ICMC

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, TEORIA DA DIMENSÃO

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PÉREZ, Victor Hugo Jorge e MIRANDA-NETO, Cleto Brasileiro. Criteria for prescribed bound on projective dimension. Communications in Algebra, v. 49, p. 2505-2515, 2021Tradução . . Disponível em: https://doi.org/10.1080/00927872.2021.1874004. Acesso em: 25 jun. 2022.
    • APA

      Pérez, V. H. J., & Miranda-Neto, C. B. (2021). Criteria for prescribed bound on projective dimension. Communications in Algebra, 49, 2505-2515. doi:10.1080/00927872.2021.1874004
    • NLM

      Pérez VHJ, Miranda-Neto CB. Criteria for prescribed bound on projective dimension [Internet]. Communications in Algebra. 2021 ; 49 2505-2515.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1874004
    • Vancouver

      Pérez VHJ, Miranda-Neto CB. Criteria for prescribed bound on projective dimension [Internet]. Communications in Algebra. 2021 ; 49 2505-2515.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2021.1874004
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZHANG, Zerui. Solvability and nilpotency of Novikov algebras. Communications in Algebra, v. 48, n. 12, p. 5412-5420, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1789652. Acesso em: 25 jun. 2022.
    • APA

      Shestakov, I. P., & Zhang, Z. (2020). Solvability and nilpotency of Novikov algebras. Communications in Algebra, 48( 12), 5412-5420. doi:10.1080/00927872.2020.1789652
    • NLM

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1789652
    • Vancouver

      Shestakov IP, Zhang Z. Solvability and nilpotency of Novikov algebras [Internet]. Communications in Algebra. 2020 ; 48( 12): 5412-5420.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1789652
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e GUZZO JÚNIOR, Henrique e WEI, Feng. Multiplicative Lie-type derivations on alternative rings. Communications in Algebra, v. 48, n. 12, p. 5396-5411, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1789160. Acesso em: 25 jun. 2022.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Wei, F. (2020). Multiplicative Lie-type derivations on alternative rings. Communications in Algebra, 48( 12), 5396-5411. doi:10.1080/00927872.2020.1789160
    • NLM

      Ferreira BLM, Guzzo Júnior H, Wei F. Multiplicative Lie-type derivations on alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 12): 5396-5411.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1789160
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Wei F. Multiplicative Lie-type derivations on alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 12): 5396-5411.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1789160
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale e SHESTAKOV, Ivan P. Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, v. 48, n. 7, p. 3091-3098, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1729363. Acesso em: 25 jun. 2022.
    • APA

      Crode, S. D., & Shestakov, I. P. (2020). Locally nilpotent derivations and automorphisms of free associative algebra with two generators. Communications in Algebra, 48( 7), 3091-3098. doi:10.1080/00927872.2020.1729363
    • NLM

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1729363
    • Vancouver

      Crode SD, Shestakov IP. Locally nilpotent derivations and automorphisms of free associative algebra with two generators [Internet]. Communications in Algebra. 2020 ; 48( 7): 3091-3098.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1729363
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Bruno Leonardo Macedo e GUZZO JÚNIOR, Henrique e FERREIRA, Ruth Nascimento. Jordan derivations of alternative rings. Communications in Algebra, v. 48, n. 2, p. 717-723, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2019.1659285. Acesso em: 25 jun. 2022.
    • APA

      Ferreira, B. L. M., Guzzo Júnior, H., & Ferreira, R. N. (2020). Jordan derivations of alternative rings. Communications in Algebra, 48( 2), 717-723. doi:10.1080/00927872.2019.1659285
    • NLM

      Ferreira BLM, Guzzo Júnior H, Ferreira RN. Jordan derivations of alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 2): 717-723.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2019.1659285
    • Vancouver

      Ferreira BLM, Guzzo Júnior H, Ferreira RN. Jordan derivations of alternative rings [Internet]. Communications in Algebra. 2020 ; 48( 2): 717-723.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2019.1659285
  • Source: Communications in Algebra. Unidade: ICMC

    Subject: CURVAS ALGÉBRICAS

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MONTANUCCI, Maria e SPEZIALI, Pietro. Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, v. 48, n. 9, p. 3690-3706, 2020Tradução . . Disponível em: https://doi.org/10.1080/00927872.2020.1743714. Acesso em: 25 jun. 2022.
    • APA

      Montanucci, M., & Speziali, P. (2020). Large automorphism groups of ordinary curves of even genus in odd characteristic. Communications in Algebra, 48( 9), 3690-3706. doi:10.1080/00927872.2020.1743714
    • NLM

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1743714
    • Vancouver

      Montanucci M, Speziali P. Large automorphism groups of ordinary curves of even genus in odd characteristic [Internet]. Communications in Algebra. 2020 ; 48( 9): 3690-3706.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2020.1743714
  • Source: Communications in Algebra. Unidade: IME

    Subjects: TEORIA DOS GRUPOS, GRUPOS DE LIE

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e SANKARAN, Parameswaran e WONG, Peter. Twisted conjugacy in free products. Communications in Algebra, v. 48, n. 9, p. 3916-3921, 2020Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2020.1751848. Acesso em: 25 jun. 2022.
    • APA

      Gonçalves, D. L., Sankaran, P., & Wong, P. (2020). Twisted conjugacy in free products. Communications in Algebra, 48( 9), 3916-3921. doi:10.1080/00927872.2020.1751848
    • NLM

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2020.1751848
    • Vancouver

      Gonçalves DL, Sankaran P, Wong P. Twisted conjugacy in free products [Internet]. Communications in Algebra. 2020 ; 48( 9): 3916-3921.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2020.1751848
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRA HOMOLÓGICA

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MARCOS, Eduardo do Nascimento e MENDOZA, Octavio e SÁENZ, Corina. Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, v. 47, n. 8, p. 3076-3093, 2019Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2018.1550786. Acesso em: 25 jun. 2022.
    • APA

      Marcos, E. do N., Mendoza, O., & Sáenz, C. (2019). Cokernels of the Cartan matrix and stratifying systems. Communications in Algebra, 47( 8), 3076-3093. doi:10.1080/00927872.2018.1550786
    • NLM

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2018.1550786
    • Vancouver

      Marcos E do N, Mendoza O, Sáenz C. Cokernels of the Cartan matrix and stratifying systems [Internet]. Communications in Algebra. 2019 ; 47( 8): 3076-3093.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2018.1550786
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS DE GRUPOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BAVULA, Volodymyr e FUTORNY, Vyacheslav. Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, v. 47, n. 10, p. 4114–4124, 2019Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2019.1579336. Acesso em: 25 jun. 2022.
    • APA

      Bavula, V., & Futorny, V. (2019). Rings of invariants of finite groups when the bad primes exist. Communications in Algebra, 47( 10), 4114–4124. doi:10.1080/00927872.2019.1579336
    • NLM

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
    • Vancouver

      Bavula V, Futorny V. Rings of invariants of finite groups when the bad primes exist [Internet]. Communications in Algebra. 2019 ; 47( 10): 4114–4124.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2019.1579336
  • Source: Communications in Algebra. Unidade: IME

    Subjects: GRUPOS FINITOS ABSTRATOS, GRUPOS NILPOTENTES

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GONÇALVES, Daciberg Lima e NASYBULLOV, Timur. On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, v. 47, n. 3, p. 930-944, 2019Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2018.1498873. Acesso em: 25 jun. 2022.
    • APA

      Gonçalves, D. L., & Nasybullov, T. (2019). On groups where the twisted conjugacy class of the unit element is a subgroup. Communications in Algebra, 47( 3), 930-944. doi:10.1080/00927872.2018.1498873
    • NLM

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2018.1498873
    • Vancouver

      Gonçalves DL, Nasybullov T. On groups where the twisted conjugacy class of the unit element is a subgroup [Internet]. Communications in Algebra. 2019 ; 47( 3): 930-944.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2018.1498873
  • Source: Communications in Algebra. Unidade: IME

    Subject: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando. Quantum linear Galois orders. Communications in Algebra, v. 47, n. 12, p. 5361–5369, 2019Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2019.1623236. Acesso em: 25 jun. 2022.
    • APA

      Futorny, V., & Schwarz, J. F. (2019). Quantum linear Galois orders. Communications in Algebra, 47( 12), 5361–5369. doi:10.1080/00927872.2019.1623236
    • NLM

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2019.1623236
    • Vancouver

      Futorny V, Schwarz JF. Quantum linear Galois orders [Internet]. Communications in Algebra. 2019 ; 47( 12): 5361–5369.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2019.1623236
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS COMUTATIVOS, ÁLGEBRA DIFERENCIAL

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELOSO, Marcelo e SHESTAKOV, Ivan P. Rings of constants of linear derivations on Fermat rings. Communications in Algebra, v. 46, n. 12, p. 5469-5479, 2018Tradução . . Disponível em: https://doi.org/10.1080/00927872.2018.1469032. Acesso em: 25 jun. 2022.
    • APA

      Veloso, M., & Shestakov, I. P. (2018). Rings of constants of linear derivations on Fermat rings. Communications in Algebra, 46( 12), 5469-5479. doi:10.1080/00927872.2018.1469032
    • NLM

      Veloso M, Shestakov IP. Rings of constants of linear derivations on Fermat rings [Internet]. Communications in Algebra. 2018 ; 46( 12): 5469-5479.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2018.1469032
    • Vancouver

      Veloso M, Shestakov IP. Rings of constants of linear derivations on Fermat rings [Internet]. Communications in Algebra. 2018 ; 46( 12): 5469-5479.[citado 2022 jun. 25 ] Available from: https://doi.org/10.1080/00927872.2018.1469032
  • Source: Communications in Algebra. Unidade: IME

    Subject: ÁLGEBRAS DE LIE

    PrivateOnline source accessDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BILLIG, Yuly e FUTORNY, Vyacheslav. Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, v. 46, n. 8, p. 3413–3429, 2018Tradução . . Disponível em: http://dx.doi.org/10.1080/00927872.2017.1412456. Acesso em: 25 jun. 2022.
    • APA

      Billig, Y., & Futorny, V. (2018). Lie algebras of vector fields on smooth affine varieties. Communications in Algebra, 46( 8), 3413–3429. doi:10.1080/00927872.2017.1412456
    • NLM

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2017.1412456
    • Vancouver

      Billig Y, Futorny V. Lie algebras of vector fields on smooth affine varieties [Internet]. Communications in Algebra. 2018 ; 46( 8): 3413–3429.[citado 2022 jun. 25 ] Available from: http://dx.doi.org/10.1080/00927872.2017.1412456

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022