Filtros : "Chemical Communications" Limpar

Filtros



Refine with date range


  • Source: Chemical Communications. Unidade: IQSC

    Subjects: LUZ, ÉTER, QUÍMICA ORGÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARIELLO, Guilherme et al. Visible light-mediated formal alkylation and [4+1]-cycloaddition strategies of silyl enol ethers with aryldiazoacetates. Chemical Communications, v. 61, n. 10, p. 2044–2047, 2025Tradução . . Disponível em: http://doi.org/10.1039/d4cc05451b. Acesso em: 16 jun. 2025.
    • APA

      Cariello, G., Gallo, R. D. C., Deflon, V. M., Cormanich, R. A., & Jurberg, I. D. (2025). Visible light-mediated formal alkylation and [4+1]-cycloaddition strategies of silyl enol ethers with aryldiazoacetates. Chemical Communications, 61( 10), 2044–2047. doi:10.1039/d4cc05451b
    • NLM

      Cariello G, Gallo RDC, Deflon VM, Cormanich RA, Jurberg ID. Visible light-mediated formal alkylation and [4+1]-cycloaddition strategies of silyl enol ethers with aryldiazoacetates [Internet]. Chemical Communications. 2025 ;61( 10): 2044–2047.[citado 2025 jun. 16 ] Available from: http://doi.org/10.1039/d4cc05451b
    • Vancouver

      Cariello G, Gallo RDC, Deflon VM, Cormanich RA, Jurberg ID. Visible light-mediated formal alkylation and [4+1]-cycloaddition strategies of silyl enol ethers with aryldiazoacetates [Internet]. Chemical Communications. 2025 ;61( 10): 2044–2047.[citado 2025 jun. 16 ] Available from: http://doi.org/10.1039/d4cc05451b
  • Source: Chemical Communications. Unidade: IQSC

    Subjects: HIDROGÊNIO, SACARÍDEOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      IOST, Rodrigo Michelin et al. Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide. Chemical Communications, v. 60, p. 2509, 2024Tradução . . Disponível em: https://doi.org/10.1039/d3cc06185j. Acesso em: 16 jun. 2025.
    • APA

      Iost, R. M., Venkatkarthick, R., Nascimento, S. Q., Lima, F. H. B. de, & Crespilho, F. N. (2024). Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide. Chemical Communications, 60, 2509. doi:10.1039/d3cc06185j
    • NLM

      Iost RM, Venkatkarthick R, Nascimento SQ, Lima FHB de, Crespilho FN. Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide [Internet]. Chemical Communications. 2024 ;60 2509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d3cc06185j
    • Vancouver

      Iost RM, Venkatkarthick R, Nascimento SQ, Lima FHB de, Crespilho FN. Hydrogen bioelectrogeneration with pH-resilient and oxygen-tolerant cobalt apoenzyme-saccharide [Internet]. Chemical Communications. 2024 ;60 2509.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d3cc06185j
  • Source: Chemical Communications. Unidade: IQSC

    Subjects: POLÍMEROS (QUÍMICA ORGÂNICA), BIOMASSA, LIPÍDEOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALARCON, Rafael Turra et al. Lipidic biomass as a renewable chemical building block for polymeric materials. Chemical Communications, v. 60, p. 14557-14572, 2024Tradução . . Disponível em: https://doi.org/10.1039/D4CC04993D. Acesso em: 16 jun. 2025.
    • APA

      Alarcon, R. T., Santos, G. I. dos, Gaglieri, C., Moura, A. de, Cavalheiro, E. T. G., & Bannach, G. (2024). Lipidic biomass as a renewable chemical building block for polymeric materials. Chemical Communications, 60, 14557-14572. doi:10.1039/d4cc04993d
    • NLM

      Alarcon RT, Santos GI dos, Gaglieri C, Moura A de, Cavalheiro ETG, Bannach G. Lipidic biomass as a renewable chemical building block for polymeric materials [Internet]. Chemical Communications. 2024 ; 60 14557-14572.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/D4CC04993D
    • Vancouver

      Alarcon RT, Santos GI dos, Gaglieri C, Moura A de, Cavalheiro ETG, Bannach G. Lipidic biomass as a renewable chemical building block for polymeric materials [Internet]. Chemical Communications. 2024 ; 60 14557-14572.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/D4CC04993D
  • Source: Chemical Communications. Unidade: IQSC

    Subjects: PROTEÍNAS, NANOPARTÍCULAS, ESPECTROSCOPIA ATÔMICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HASSAN, Ayaz et al. Enhanced label-free detection of proteins on Au nanoparticle micropatterns for surface-enhanced infrared absorption spectroscopy. Chemical Communications, v. 60, p. 7212, 2024Tradução . . Disponível em: https://doi.org/10.1039/d4cc01320d. Acesso em: 16 jun. 2025.
    • APA

      Hassan, A., Sousa, D. da S. de, Bertaglia, T., & Crespilho, F. N. (2024). Enhanced label-free detection of proteins on Au nanoparticle micropatterns for surface-enhanced infrared absorption spectroscopy. Chemical Communications, 60, 7212. doi:10.1039/d4cc01320d
    • NLM

      Hassan A, Sousa D da S de, Bertaglia T, Crespilho FN. Enhanced label-free detection of proteins on Au nanoparticle micropatterns for surface-enhanced infrared absorption spectroscopy [Internet]. Chemical Communications. 2024 ;60 7212.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d4cc01320d
    • Vancouver

      Hassan A, Sousa D da S de, Bertaglia T, Crespilho FN. Enhanced label-free detection of proteins on Au nanoparticle micropatterns for surface-enhanced infrared absorption spectroscopy [Internet]. Chemical Communications. 2024 ;60 7212.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d4cc01320d
  • Source: Chemical Communications. Unidade: IF

    Subjects: LUMINESCÊNCIA, ÍONS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAIS, Alysson Ferreira et al. 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate. Chemical Communications, v. 59, n. 91, p. 13571-13574, 2023Tradução . . Disponível em: https://doi.org/10.1039/d3cc03066k. Acesso em: 16 jun. 2025.
    • APA

      Morais, A. F., Silva, I. G. N. da, Ferreira, B. J., Teixeira, A. C., Sree, S. P., Terraschke, H., et al. (2023). 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate. Chemical Communications, 59( 91), 13571-13574. doi:10.1039/d3cc03066k
    • NLM

      Morais AF, Silva IGN da, Ferreira BJ, Teixeira AC, Sree SP, Terraschke H, Garcia FA, Breynaert E, Mustafa D. 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate [Internet]. Chemical Communications. 2023 ; 59( 91): 13571-13574.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d3cc03066k
    • Vancouver

      Morais AF, Silva IGN da, Ferreira BJ, Teixeira AC, Sree SP, Terraschke H, Garcia FA, Breynaert E, Mustafa D. 'EU' POT. 3+' doped 'ZN''AL' layered double hydroxides as calibrationless, fluorescent sensors for carbonate [Internet]. Chemical Communications. 2023 ; 59( 91): 13571-13574.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d3cc03066k
  • Source: Chemical Communications. Unidade: IQSC

    Subjects: PEPTÍDEOS, ALQUILAÇÃO, FOTOCATÁLISE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Rafaely N. et al. Post-synthetic functionalization of tryptophan protected peptide sequences through indole (C-2) photocatalytic alkylation. Chemical Communications, v. 57, p. 5758–5761, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1cc01822a. Acesso em: 16 jun. 2025.
    • APA

      Lima, R. N., Delgado, J. A. C., Bernardi, D. I., Berlinck, R. G. de S., Kaplaneris, N., Ackermann, L., & Paixão, M. W. (2021). Post-synthetic functionalization of tryptophan protected peptide sequences through indole (C-2) photocatalytic alkylation. Chemical Communications, 57, 5758–5761. doi:10.1039/d1cc01822a
    • NLM

      Lima RN, Delgado JAC, Bernardi DI, Berlinck RG de S, Kaplaneris N, Ackermann L, Paixão MW. Post-synthetic functionalization of tryptophan protected peptide sequences through indole (C-2) photocatalytic alkylation [Internet]. Chemical Communications. 2021 ; 57 5758–5761.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d1cc01822a
    • Vancouver

      Lima RN, Delgado JAC, Bernardi DI, Berlinck RG de S, Kaplaneris N, Ackermann L, Paixão MW. Post-synthetic functionalization of tryptophan protected peptide sequences through indole (C-2) photocatalytic alkylation [Internet]. Chemical Communications. 2021 ; 57 5758–5761.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d1cc01822a
  • Source: Chemical Communications. Unidade: FCF

    Subjects: ESPECTROSCOPIA, ANTIBIÓTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DEMARQUE, Daniel Pecoraro e KEMPER, Michael e MERTEN, Christian. VCD spectroscopy reveals that a water molecule determines the conformation of azithromycin in solution. Chemical Communications, v. 57, p. 4031–4034, 2021Tradução . . Disponível em: https://doi.org/10.1039/d1cc00932j. Acesso em: 16 jun. 2025.
    • APA

      Demarque, D. P., Kemper, M., & Merten, C. (2021). VCD spectroscopy reveals that a water molecule determines the conformation of azithromycin in solution. Chemical Communications, 57, 4031–4034. doi:10.1039/d1cc00932j
    • NLM

      Demarque DP, Kemper M, Merten C. VCD spectroscopy reveals that a water molecule determines the conformation of azithromycin in solution [Internet]. Chemical Communications. 2021 ; 57 4031–4034.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d1cc00932j
    • Vancouver

      Demarque DP, Kemper M, Merten C. VCD spectroscopy reveals that a water molecule determines the conformation of azithromycin in solution [Internet]. Chemical Communications. 2021 ; 57 4031–4034.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d1cc00932j
  • Source: Chemical Communications. Unidade: IQ

    Subjects: ESPECTROSCOPIA, NANOPARTÍCULAS, OURO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Paulo Filho Marques de et al. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chemical Communications, v. 56, p. 10329-10332, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0cc03862h. Acesso em: 16 jun. 2025.
    • APA

      Oliveira, P. F. M. de, Michalchuk, A. A. L., Buzanich, A. G., Bienert, R., Torresi, R. M., Camargo, P. H. C. de, & Emmerling, F. (2020). Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chemical Communications, 56, 10329-10332. doi:10.1039/d0cc03862h
    • NLM

      Oliveira PFM de, Michalchuk AAL, Buzanich AG, Bienert R, Torresi RM, Camargo PHC de, Emmerling F. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis [Internet]. Chemical Communications. 2020 ; 56 10329-10332.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc03862h
    • Vancouver

      Oliveira PFM de, Michalchuk AAL, Buzanich AG, Bienert R, Torresi RM, Camargo PHC de, Emmerling F. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis [Internet]. Chemical Communications. 2020 ; 56 10329-10332.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc03862h
  • Source: Chemical Communications. Unidade: IQ

    Subjects: ELETROQUÍMICA, SILÍCIO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GAUTAM, Shreedhar et al. High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes. Chemical Communications, v. 56, p. 7435-7438, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0cc02959a. Acesso em: 16 jun. 2025.
    • APA

      Gautam, S., Gonçales, V. R., Colombo, R. N. P., Tang, W., Torresi, S. I. C. de, Reece, P. J., et al. (2020). High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes. Chemical Communications, 56, 7435-7438. doi:10.1039/d0cc02959a
    • NLM

      Gautam S, Gonçales VR, Colombo RNP, Tang W, Torresi SIC de, Reece PJ, Tilley RD, Gooding JJ. High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes [Internet]. Chemical Communications. 2020 ; 56 7435-7438.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc02959a
    • Vancouver

      Gautam S, Gonçales VR, Colombo RNP, Tang W, Torresi SIC de, Reece PJ, Tilley RD, Gooding JJ. High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes [Internet]. Chemical Communications. 2020 ; 56 7435-7438.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc02959a
  • Source: Chemical Communications. Unidades: IQ, IFSC

    Subjects: BIOCOMBUSTÍVEIS, CARBONO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SEMPIONATTO, Juliane Renata et al. Enzymatic biofuel cells based on protective hydrophobic carbon paste electrodes: towards epidermal bioenergy harvesting in the acidic sweat environment. Chemical Communications, v. 56, n. 13, p. 2004-2007, 2020Tradução . . Disponível em: https://doi.org/10.1039/c9cc09533k. Acesso em: 16 jun. 2025.
    • APA

      Sempionatto, J. R., Raymundo-Pereira, P. A., Azeredo, N. F. B., Silva, A. N. D. L. e, Angnes, L., & Wang, J. (2020). Enzymatic biofuel cells based on protective hydrophobic carbon paste electrodes: towards epidermal bioenergy harvesting in the acidic sweat environment. Chemical Communications, 56( 13), 2004-2007. doi:10.1039/c9cc09533k
    • NLM

      Sempionatto JR, Raymundo-Pereira PA, Azeredo NFB, Silva ANDL e, Angnes L, Wang J. Enzymatic biofuel cells based on protective hydrophobic carbon paste electrodes: towards epidermal bioenergy harvesting in the acidic sweat environment [Internet]. Chemical Communications. 2020 ; 56( 13): 2004-2007.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c9cc09533k
    • Vancouver

      Sempionatto JR, Raymundo-Pereira PA, Azeredo NFB, Silva ANDL e, Angnes L, Wang J. Enzymatic biofuel cells based on protective hydrophobic carbon paste electrodes: towards epidermal bioenergy harvesting in the acidic sweat environment [Internet]. Chemical Communications. 2020 ; 56( 13): 2004-2007.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c9cc09533k
  • Source: Chemical Communications. Unidade: IQ

    Subjects: ELETRODEPOSIÇÃO, ESPECTROSCOPIA RAMAN

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COLOMBO, Rafael Neri Prystaj et al. Spatially localized electrodeposition of multiple metals via light-activated electrochemistry for surface enhanced Raman spectroscopy applications. Chemical Communications, v. 56, p. 5831-5834, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0cc01661f. Acesso em: 16 jun. 2025.
    • APA

      Colombo, R. N. P., Gonçales, V. R., Gautam, S., Tilley, R., Gooding, J. J., & Torresi, S. I. C. de. (2020). Spatially localized electrodeposition of multiple metals via light-activated electrochemistry for surface enhanced Raman spectroscopy applications. Chemical Communications, 56, 5831-5834. doi:10.1039/d0cc01661f
    • NLM

      Colombo RNP, Gonçales VR, Gautam S, Tilley R, Gooding JJ, Torresi SIC de. Spatially localized electrodeposition of multiple metals via light-activated electrochemistry for surface enhanced Raman spectroscopy applications [Internet]. Chemical Communications. 2020 ; 56 5831-5834.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc01661f
    • Vancouver

      Colombo RNP, Gonçales VR, Gautam S, Tilley R, Gooding JJ, Torresi SIC de. Spatially localized electrodeposition of multiple metals via light-activated electrochemistry for surface enhanced Raman spectroscopy applications [Internet]. Chemical Communications. 2020 ; 56 5831-5834.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc01661f
  • Source: Chemical Communications. Unidade: IFSC

    Subjects: LIPOSSOMOS, NANOPARTÍCULAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIBOVSKI, Laís et al. Light-induced molecular rotation triggers on-demand release from liposomes. Chemical Communications, v. 56, n. 62, p. 8774-8777, 2020Tradução . . Disponível em: https://doi.org/10.1039/D0CC02499F. Acesso em: 16 jun. 2025.
    • APA

      Ribovski, L., Zhou, Q., Chen, J., Feringa, B. L., Rijn, P. van, & Zuhorn, I. S. (2020). Light-induced molecular rotation triggers on-demand release from liposomes. Chemical Communications, 56( 62), 8774-8777. doi:10.1039/D0CC02499F
    • NLM

      Ribovski L, Zhou Q, Chen J, Feringa BL, Rijn P van, Zuhorn IS. Light-induced molecular rotation triggers on-demand release from liposomes [Internet]. Chemical Communications. 2020 ; 56( 62): 8774-8777.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/D0CC02499F
    • Vancouver

      Ribovski L, Zhou Q, Chen J, Feringa BL, Rijn P van, Zuhorn IS. Light-induced molecular rotation triggers on-demand release from liposomes [Internet]. Chemical Communications. 2020 ; 56( 62): 8774-8777.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/D0CC02499F
  • Source: Chemical Communications. Unidade: IFSC

    Subjects: CRISTALOGRAFIA, CARBONO (ESTRUTURA;ESTUDO), QUÍMICA INORGÂNICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS, Fernando Machado dos et al. A giant hybrid organic-inorganic octahedron from a narrow rim carboxylate calixarene. Chemical Communications, v. 56, n. 95, p. 15024-15027, 2020Tradução . . Disponível em: https://doi.org/10.1039/d0cc07043b. Acesso em: 16 jun. 2025.
    • APA

      Santos, F. M. dos, Alvarenga, M. E., Valdo, A. K. S. M., Rabelo, R., Gomes, D. C. de C., Fátima, Â. de, et al. (2020). A giant hybrid organic-inorganic octahedron from a narrow rim carboxylate calixarene. Chemical Communications, 56( 95), 15024-15027. doi:10.1039/d0cc07043b
    • NLM

      Santos FM dos, Alvarenga ME, Valdo AKSM, Rabelo R, Gomes DC de C, Fátima  de, Lara TVC, Silva CM da, Tasso TT, de Araujo Neto JH, Batista AA, Ayala AP, Ellena J, Guimarães VF, Oliveira CMA, Silva LC da, Vaz BG, Martins FT. A giant hybrid organic-inorganic octahedron from a narrow rim carboxylate calixarene [Internet]. Chemical Communications. 2020 ; 56( 95): 15024-15027.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc07043b
    • Vancouver

      Santos FM dos, Alvarenga ME, Valdo AKSM, Rabelo R, Gomes DC de C, Fátima  de, Lara TVC, Silva CM da, Tasso TT, de Araujo Neto JH, Batista AA, Ayala AP, Ellena J, Guimarães VF, Oliveira CMA, Silva LC da, Vaz BG, Martins FT. A giant hybrid organic-inorganic octahedron from a narrow rim carboxylate calixarene [Internet]. Chemical Communications. 2020 ; 56( 95): 15024-15027.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/d0cc07043b
  • Source: Chemical Communications. Unidades: ICB, FCFRP, IO, IQSC

    Subjects: ANTHOZOA, ESPECTROMETRIA DE MASSAS, METABOLÔMICA, ESTRUTURA MOLECULAR (QUÍMICA TEÓRICA)

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA-LOTUFO, Letícia Veras et al. Chemical profiling of two congeneric sea mat corals along the Brazilian coast: adaptive and functional patterns. Chemical Communications, v. 54, n. 16, p. 1952-1955, 2018Tradução . . Disponível em: https://doi.org/10.1039/c7cc08411k. Acesso em: 16 jun. 2025.
    • APA

      Costa-Lotufo, L. V., Carnevale Neto, F., Trindade-Silva, A. E., Silva, R. R. da, Silva, G. G. Z., Wilke, D. V., et al. (2018). Chemical profiling of two congeneric sea mat corals along the Brazilian coast: adaptive and functional patterns. Chemical Communications, 54( 16), 1952-1955. doi:10.1039/c7cc08411k
    • NLM

      Costa-Lotufo LV, Carnevale Neto F, Trindade-Silva AE, Silva RR da, Silva GGZ, Wilke DV, Pinto F das CL, Sahm BDB, Jimenez PC, Silva JNMG, Lotufo TM da C, Pessoa ODL, Lopes NP. Chemical profiling of two congeneric sea mat corals along the Brazilian coast: adaptive and functional patterns [Internet]. Chemical Communications. 2018 ; 54( 16): 1952-1955.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c7cc08411k
    • Vancouver

      Costa-Lotufo LV, Carnevale Neto F, Trindade-Silva AE, Silva RR da, Silva GGZ, Wilke DV, Pinto F das CL, Sahm BDB, Jimenez PC, Silva JNMG, Lotufo TM da C, Pessoa ODL, Lopes NP. Chemical profiling of two congeneric sea mat corals along the Brazilian coast: adaptive and functional patterns [Internet]. Chemical Communications. 2018 ; 54( 16): 1952-1955.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c7cc08411k
  • Source: Chemical Communications. Unidade: IFSC

    Subjects: RESSONÂNCIA MAGNÉTICA NUCLEAR, PROTEÍNAS (ESTUDO), PEPTÍDEOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAVINI, Italo A. et al. Inhibition of amyloid Aβ aggregation by high pressures or specific D-enantiomeric peptides. Chemical Communications, v. 54, n. 26, p. 3294-3297, 2018Tradução . . Disponível em: https://doi.org/10.1039/C8CC01458B. Acesso em: 16 jun. 2025.
    • APA

      Cavini, I. A., Munte, C. E., Erlach, M. B., Groen, T. van, Kadish, I., Zhang, T., et al. (2018). Inhibition of amyloid Aβ aggregation by high pressures or specific D-enantiomeric peptides. Chemical Communications, 54( 26), 3294-3297. doi:10.1039/C8CC01458B
    • NLM

      Cavini IA, Munte CE, Erlach MB, Groen T van, Kadish I, Zhang T, Ziehm T, Nagel-Steger L, Kutzsche J, Kremer W, Willbold D, Kalbitzer HR. Inhibition of amyloid Aβ aggregation by high pressures or specific D-enantiomeric peptides [Internet]. Chemical Communications. 2018 ; 54( 26): 3294-3297.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/C8CC01458B
    • Vancouver

      Cavini IA, Munte CE, Erlach MB, Groen T van, Kadish I, Zhang T, Ziehm T, Nagel-Steger L, Kutzsche J, Kremer W, Willbold D, Kalbitzer HR. Inhibition of amyloid Aβ aggregation by high pressures or specific D-enantiomeric peptides [Internet]. Chemical Communications. 2018 ; 54( 26): 3294-3297.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/C8CC01458B
  • Source: Chemical Communications. Unidade: IQSC

    Assunto: ELETROCATÁLISE

    PrivadoAcesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      KHALID, Mohd et al. Nano-flocks of bimetallic organic framework for efficient hydrogen evolution electrocatalysis. Chemical Communications, v. 54, p. 11048-11051, 2018Tradução . . Disponível em: http://pubs-rsc-org.ez67.periodicos.capes.gov.br/en/content/articlepdf/2018/cc/c8cc06918b?page=search. Acesso em: 16 jun. 2025.
    • APA

      Khalid, M., Hassan, A., Honorato, A. M. B., Crespilho, F. N., & Varela, H. (2018). Nano-flocks of bimetallic organic framework for efficient hydrogen evolution electrocatalysis. Chemical Communications, 54, 11048-11051. doi:10.1039/c8cc06918b
    • NLM

      Khalid M, Hassan A, Honorato AMB, Crespilho FN, Varela H. Nano-flocks of bimetallic organic framework for efficient hydrogen evolution electrocatalysis [Internet]. Chemical Communications. 2018 ;54 11048-11051.[citado 2025 jun. 16 ] Available from: http://pubs-rsc-org.ez67.periodicos.capes.gov.br/en/content/articlepdf/2018/cc/c8cc06918b?page=search
    • Vancouver

      Khalid M, Hassan A, Honorato AMB, Crespilho FN, Varela H. Nano-flocks of bimetallic organic framework for efficient hydrogen evolution electrocatalysis [Internet]. Chemical Communications. 2018 ;54 11048-11051.[citado 2025 jun. 16 ] Available from: http://pubs-rsc-org.ez67.periodicos.capes.gov.br/en/content/articlepdf/2018/cc/c8cc06918b?page=search
  • Source: Chemical Communications. Unidade: IQ

    Subjects: DIFRAÇÃO POR RAIOS X, QUÍMICA DE COORDENAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SURBELLA, Robert G et al. A new Pu(III) coordination geometry in ('C IND. 5''H IND. 5'NBr)'IND. 2'['PuCl IND. 3'('H IND. 2'O)'IND. 5']·2Cl·'2H IND. 2'O as obtained via supramolecular assembly in aqueous, high chloride media. Chemical Communications, v. 53, n. 78, p. 10816-10819, 2017Tradução . . Disponível em: https://doi.org/10.1039/C7CC05988D. Acesso em: 16 jun. 2025.
    • APA

      Surbella, R. G., Ducati, L. C., Pellegrini, K. L., McNamara, B. K., Autschbach, J., Schwantes, J. M., & Cahill, C. L. (2017). A new Pu(III) coordination geometry in ('C IND. 5''H IND. 5'NBr)'IND. 2'['PuCl IND. 3'('H IND. 2'O)'IND. 5']·2Cl·'2H IND. 2'O as obtained via supramolecular assembly in aqueous, high chloride media. Chemical Communications, 53( 78), 10816-10819. doi:10.1039/C7CC05988D
    • NLM

      Surbella RG, Ducati LC, Pellegrini KL, McNamara BK, Autschbach J, Schwantes JM, Cahill CL. A new Pu(III) coordination geometry in ('C IND. 5''H IND. 5'NBr)'IND. 2'['PuCl IND. 3'('H IND. 2'O)'IND. 5']·2Cl·'2H IND. 2'O as obtained via supramolecular assembly in aqueous, high chloride media [Internet]. Chemical Communications. 2017 ; 53( 78): 10816-10819.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/C7CC05988D
    • Vancouver

      Surbella RG, Ducati LC, Pellegrini KL, McNamara BK, Autschbach J, Schwantes JM, Cahill CL. A new Pu(III) coordination geometry in ('C IND. 5''H IND. 5'NBr)'IND. 2'['PuCl IND. 3'('H IND. 2'O)'IND. 5']·2Cl·'2H IND. 2'O as obtained via supramolecular assembly in aqueous, high chloride media [Internet]. Chemical Communications. 2017 ; 53( 78): 10816-10819.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/C7CC05988D
  • Source: Chemical Communications. Unidade: IQ

    Subjects: NANOTECNOLOGIA, MATERIAIS NANOESTRUTURADOS, CATÁLISE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Anderson G. M. da et al. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, v. 53, p. 7135-7148, 2017Tradução . . Disponível em: https://doi.org/10.1039/c7cc02352a. Acesso em: 16 jun. 2025.
    • APA

      Silva, A. G. M. da, Rodrigues, T. S., Haigh, S. J., & Camargo, P. H. C. de. (2017). Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications. Chemical Communications, 53, 7135-7148. doi:10.1039/c7cc02352a
    • NLM

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c7cc02352a
    • Vancouver

      Silva AGM da, Rodrigues TS, Haigh SJ, Camargo PHC de. Galvanic replacement reaction: recent developments for engineering metal nanostructures towards catalytic applications [Internet]. Chemical Communications. 2017 ; 53 7135-7148.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c7cc02352a
  • Source: Chemical Communications. Unidades: IQ, IF

    Subjects: NANOTECNOLOGIA, LUMINESCÊNCIA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAIS, Alysson Ferreira et al. Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots. Chemical Communications, v. 53, p. 7341-7344 : + supplementary materials (S1-S9), 2017Tradução . . Disponível em: https://doi.org/10.1039/c7cc02097j. Acesso em: 16 jun. 2025.
    • APA

      Morais, A. F., Silva, I. G. N. da, Sree, S. P., Melo, F. M. de, Brabants, G., Brito, H. F. de, et al. (2017). Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots. Chemical Communications, 53, 7341-7344 : + supplementary materials (S1-S9). doi:10.1039/c7cc02097j
    • NLM

      Morais AF, Silva IGN da, Sree SP, Melo FM de, Brabants G, Brito HF de, Martens JA, Toma HE, Kirschhock CEA, Breynaert E, Mustafa D. Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots [Internet]. Chemical Communications. 2017 ; 53 7341-7344 : + supplementary materials (S1-S9).[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c7cc02097j
    • Vancouver

      Morais AF, Silva IGN da, Sree SP, Melo FM de, Brabants G, Brito HF de, Martens JA, Toma HE, Kirschhock CEA, Breynaert E, Mustafa D. Hierarchical self-supported ZnAlEu LDH nanotubes hosting luminescent CdTe quantum dots [Internet]. Chemical Communications. 2017 ; 53 7341-7344 : + supplementary materials (S1-S9).[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c7cc02097j
  • Source: Chemical Communications. Unidade: IQ

    Assunto: NANOCOMPOSITOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ZAMARION, Vitor de Moraes et al. Photonic metal-polymer resin nanocomposites with chiral nematic order. Chemical Communications, v. 52, n. 50, p. 7810-7813, 2016Tradução . . Disponível em: https://doi.org/10.1039/c6cc03147a. Acesso em: 16 jun. 2025.
    • APA

      Zamarion, V. de M., Khan, M. K., Schlesinger, M., Bsoul, A., Walus, K., Hamad, W. Y., & MacLachlan, M. J. (2016). Photonic metal-polymer resin nanocomposites with chiral nematic order. Chemical Communications, 52( 50), 7810-7813. doi:10.1039/c6cc03147a
    • NLM

      Zamarion V de M, Khan MK, Schlesinger M, Bsoul A, Walus K, Hamad WY, MacLachlan MJ. Photonic metal-polymer resin nanocomposites with chiral nematic order [Internet]. Chemical Communications. 2016 ; 52( 50): 7810-7813.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c6cc03147a
    • Vancouver

      Zamarion V de M, Khan MK, Schlesinger M, Bsoul A, Walus K, Hamad WY, MacLachlan MJ. Photonic metal-polymer resin nanocomposites with chiral nematic order [Internet]. Chemical Communications. 2016 ; 52( 50): 7810-7813.[citado 2025 jun. 16 ] Available from: https://doi.org/10.1039/c6cc03147a

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025